According to the formation of shock wave resulting from coal and gas outburst, the gas flow of coal and gas outburst was transformed from an unsteady flow to a steady one based on selected appropriate reference coordi...According to the formation of shock wave resulting from coal and gas outburst, the gas flow of coal and gas outburst was transformed from an unsteady flow to a steady one based on selected appropriate reference coordinates, and the mathematical expressions were then established by applying mass conservation, momentum conservation equation, and energy conservation equation. On this basis, analyzed gas flow mitigation of variable cross-section area and the outburst intensity, and the relations between cross-section area, velocity, and density; the relations between overpressures and outburst intensity were deduced. Furthermore, shock waves resulting from coal and gas outburst and outburst intensity were measured by experimental setup, the overpressure and outburst intensity of different gas pressures were obtained, and the similar conditions of the experiment were numerically simulated. The averaged overpressure and gas flow velocity of variable cross-section under different gas pressures were numerically derived. The results show that the averaged overpressure and outburst intensity obtained from simulation are in good agreement with the experimental results. Moreover, the gas flow velocity of variable cross-sections approximates to the theoretical analysis.展开更多
The photoabsorption cross sections of condensed atoms and molecules have proven to be dependent not only on the imaginary parts but also on the real parts of the polarizabilities due to the strong interatomie interact...The photoabsorption cross sections of condensed atoms and molecules have proven to be dependent not only on the imaginary parts but also on the real parts of the polarizabilities due to the strong interatomie interactions in condensed environment. The real parts of the polarizabilities calculated usually by using the famous Kramers-Kronig transformation (KKT) from the photoabsorption cross sections of the isolated atoms are very sensitive to the accuracy of the implementation method of the infinite integral in the KKT. The influence of the integral instability of the KKT and the real part of the polarizability on the variation of the photoabsorption cross sections with the number density and the structure of the condensed matter has been studied in the present work for the first time. The conclusion is that the integration method with interpolation has given more reasonable results than the direct truncation method if some appropriate interpolation functions have been used. Some notes and conclusions have also been given for the applications of the alternative coupled expressions of photoabsorption cross sections.展开更多
The Ring effect refers to the filling in of Fraunhofer lines, which is mainly attributed to the rotational Raman scattering of solar spectra by N2 and O2 molecules in the atmosphere. The Ring effect is one of the most...The Ring effect refers to the filling in of Fraunhofer lines, which is mainly attributed to the rotational Raman scattering of solar spectra by N2 and O2 molecules in the atmosphere. The Ring effect is one of the most significant factors affecting the accuracy of retrieving concentrations of atmospheric trace gases, such as NO2 and SO2, from satellite observations through differential optical absorption spectroscopy. First in this study, the solar spectrum measured by the Ozone Monitoring Instrument onboard NASA Aura is convolved with the rotational Raman cross section of the atmosphere, which is calculated from the rotational Raman cross sections of N2 and O2 molecules, and divided by the original solar spectrum. The slowly varying term is removed by fitting it with a cubic polynomial to obtain the differential Ring spectrum. The results agree well with the calculations using a radiative transfer model (R2=0.9663). Second, the differential Ring spectrum is computed using two fixed wavelengths of 410 nm and 488 nm, and the resulting differential Ring spectra are similar to that calculated with varying wavelengths and agree well with the calculation using the radiative transfer model (R2=0.9624 and 0.9639 respectively). The computation time using the fixed wavelength is about 0.128% of that using a varying wavelength. Finally, we found that the frequency spectrum of the Raman cross sections for the atmosphere, N2 molecules and O2 molecules are similar; thus, the Raman cross section of N2 or O2 molecules can be used to compute the approximate Ring effect for simplicity.展开更多
The work deals with numerical modelling of turbulent flows in channels with an expansion of the cross-section where flow separation and reattachment occur. The performance of several eddy viscosity models and an expli...The work deals with numerical modelling of turbulent flows in channels with an expansion of the cross-section where flow separation and reattachment occur. The performance of several eddy viscosity models and an explicit algebraic Reynolds stress model (EARSM) is studied. The used test cases are flows in channels with various backward facing steps where the step is perpendicular or inclined and the top wall is parallel or deflected. Furthermore, a channel with the circular ramp is considered. The numerical solution is achieved by the finite volume method or by the finite element method. The results of both numerical approaches are compared.展开更多
基金Supported by the National Natural Science Foundation of China (50874111) the National High Technology Research and Development Program (2009AA063201)+2 种基金 the Program for New Century Excellent Talents in University of China (NCET-10-0724) the Fundamental Research Funds for Central Universities(2010QZ05) SRF for ROCS, SEM
文摘According to the formation of shock wave resulting from coal and gas outburst, the gas flow of coal and gas outburst was transformed from an unsteady flow to a steady one based on selected appropriate reference coordinates, and the mathematical expressions were then established by applying mass conservation, momentum conservation equation, and energy conservation equation. On this basis, analyzed gas flow mitigation of variable cross-section area and the outburst intensity, and the relations between cross-section area, velocity, and density; the relations between overpressures and outburst intensity were deduced. Furthermore, shock waves resulting from coal and gas outburst and outburst intensity were measured by experimental setup, the overpressure and outburst intensity of different gas pressures were obtained, and the similar conditions of the experiment were numerically simulated. The averaged overpressure and gas flow velocity of variable cross-section under different gas pressures were numerically derived. The results show that the averaged overpressure and outburst intensity obtained from simulation are in good agreement with the experimental results. Moreover, the gas flow velocity of variable cross-sections approximates to the theoretical analysis.
基金Supported by the Natural Science Foundations of Ludong University under Grant Nos.22270301 and L20072804
文摘The photoabsorption cross sections of condensed atoms and molecules have proven to be dependent not only on the imaginary parts but also on the real parts of the polarizabilities due to the strong interatomie interactions in condensed environment. The real parts of the polarizabilities calculated usually by using the famous Kramers-Kronig transformation (KKT) from the photoabsorption cross sections of the isolated atoms are very sensitive to the accuracy of the implementation method of the infinite integral in the KKT. The influence of the integral instability of the KKT and the real part of the polarizability on the variation of the photoabsorption cross sections with the number density and the structure of the condensed matter has been studied in the present work for the first time. The conclusion is that the integration method with interpolation has given more reasonable results than the direct truncation method if some appropriate interpolation functions have been used. Some notes and conclusions have also been given for the applications of the alternative coupled expressions of photoabsorption cross sections.
文摘The Ring effect refers to the filling in of Fraunhofer lines, which is mainly attributed to the rotational Raman scattering of solar spectra by N2 and O2 molecules in the atmosphere. The Ring effect is one of the most significant factors affecting the accuracy of retrieving concentrations of atmospheric trace gases, such as NO2 and SO2, from satellite observations through differential optical absorption spectroscopy. First in this study, the solar spectrum measured by the Ozone Monitoring Instrument onboard NASA Aura is convolved with the rotational Raman cross section of the atmosphere, which is calculated from the rotational Raman cross sections of N2 and O2 molecules, and divided by the original solar spectrum. The slowly varying term is removed by fitting it with a cubic polynomial to obtain the differential Ring spectrum. The results agree well with the calculations using a radiative transfer model (R2=0.9663). Second, the differential Ring spectrum is computed using two fixed wavelengths of 410 nm and 488 nm, and the resulting differential Ring spectra are similar to that calculated with varying wavelengths and agree well with the calculation using the radiative transfer model (R2=0.9624 and 0.9639 respectively). The computation time using the fixed wavelength is about 0.128% of that using a varying wavelength. Finally, we found that the frequency spectrum of the Raman cross sections for the atmosphere, N2 molecules and O2 molecules are similar; thus, the Raman cross section of N2 or O2 molecules can be used to compute the approximate Ring effect for simplicity.
基金supported by Grant Number 103/09/0977 of Czech Science FoundationResearch Plans of MSMT No. 6840770010 and No. AV0Z207 60514
文摘The work deals with numerical modelling of turbulent flows in channels with an expansion of the cross-section where flow separation and reattachment occur. The performance of several eddy viscosity models and an explicit algebraic Reynolds stress model (EARSM) is studied. The used test cases are flows in channels with various backward facing steps where the step is perpendicular or inclined and the top wall is parallel or deflected. Furthermore, a channel with the circular ramp is considered. The numerical solution is achieved by the finite volume method or by the finite element method. The results of both numerical approaches are compared.