Wavelet network, a class of neural network consisting of wavelets, is proposed to solve the inverse kinematics problem in robotic manipulator. A wavelet network suitable for dealing with multi-input and multi-output s...Wavelet network, a class of neural network consisting of wavelets, is proposed to solve the inverse kinematics problem in robotic manipulator. A wavelet network suitable for dealing with multi-input and multi-output system is constructed. The network is optimized by reducing the number of wavelets handling large dimension problem according to the sample data. The algorithms for sparseness analysis of input data and fitting wavelets to the output data with orthogonal method are introduced. Then Levenberg-Marquardt algorithm is used to train the network. Simulation results showed that this method is capable of solving the inverse kinematics problem for PUMA560.展开更多
Presents a novel compliant motion control for a robot hand using the Cartesian impedance approach based on fingertip force measurements. The fingertip can accurately track desired motion in free space and appear as me...Presents a novel compliant motion control for a robot hand using the Cartesian impedance approach based on fingertip force measurements. The fingertip can accurately track desired motion in free space and appear as mechanical impedance in constrained space. In the position based impedance control strategy, any switching mode in contact transition phase is not needed. The impedance parameters can be adjusted in a certain range according to various tasks. In this paper, the analysis of the finger’s kinematics and dynamics is given. Experimental results have shown the effectiveness of this control strategy.展开更多
Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexter...Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexterous design per the requirements of anthropomorphic robots. Underactuated self-adaptive theory is adopted to decrease the number of motors and weight. The fingers of HIT ARhand with multi phalanges have the same size as those of an adult hand. Force control is realized with the position sensor, joint torque sensor and fingertip torque sensor. From the 3D model, the whole hand, with the low power consumption DSP control board integrated in it, will weigh only 500 g. It will be assembled on a BIT-Anthropomorphic Robot.展开更多
Based on flexible pneumatic actuator(FPA),bending joint and side-sway joint,a new kind of pneumatic dexterous robot finger was developed.The finger is equipped with one five-component force sensor and four contactless...Based on flexible pneumatic actuator(FPA),bending joint and side-sway joint,a new kind of pneumatic dexterous robot finger was developed.The finger is equipped with one five-component force sensor and four contactless magnetic rotary encoders.Mechanical parts and FPAs are integrated,which reduces the overall size of the finger.Driven by FPA directly,the joint output torque is more accurate and the friction and vibration can be effectively reduced.An improved adaptive genetic algorithm(IAGA) was adopted to solve the inverse kinematics problem of the redundant finger.The statics of the finger was analyzed and the relation between fingertip force and joint torque was built.Finally,the finger force/position control principle was introduced.Tracking experiments of fingertip force/position were carried out.The experimental results show that the fingertip position tracking error is within ±1 mm and the fingertip force tracking error is within ±0.4 N.It is also concluded from the theoretical and experimental results that the finger can be controlled and it has a good application prospect.展开更多
A real-time wavelet multi-resolution analysis (MRA)-based fault detection algorithm is proposed. The first stage detailed MRA signals extracted from the original signals were used as the criteria for fault detection. ...A real-time wavelet multi-resolution analysis (MRA)-based fault detection algorithm is proposed. The first stage detailed MRA signals extracted from the original signals were used as the criteria for fault detection. By measuring sharp variations in the detailed MRA signals, faults in the motor driving system of pipeline detection robot arm could be detected. The fault type was then identified by comparison of the three-phase MRA sharp variations. The effects of the faults were examined. The simulation results show that this algorithm is effective and robust, it is promising for fault detection in a robot's joint driving system. The method is simple, rapid and it can operate in real time.展开更多
A surgical manipulator has widely been used for laparoscopic surgery. It has been chosen mainly for the use in supporting human operations and in robot systems like the da Vinci surgical system. These manipulator syst...A surgical manipulator has widely been used for laparoscopic surgery. It has been chosen mainly for the use in supporting human operations and in robot systems like the da Vinci surgical system. These manipulator systems are suitable for careful work, but they have a few problems. One of the problems is that the manipulator is not equipped with haptic sensing functions. Therefore, the operator must know the advanced techniques for visually detecting the physical contact state during surgical operations. These haptic sensing functions thus need to be incorporated into a surgical manipulator. We have developed hydraulic-driven forceps with a micro bearing and a bellows tube that can convey haptic sense to the operator. This system can measure the small forces acting on the tips of the forceps using Pascal's principle. A model of the system is provided from the relationship between the internal pressure of the bellows tube and the refraction angles of the forceps. It was confirmed using this model that the developed system makes it possible to estimate both the strength and the direction of the external force applied to the forceps by measuring the internal pressure of the bellows tube. An operator using a three-dimensional haptic device was able to feel the force response during an experiment in which they used the forceps to hold a blood vessel. This report describes the most appropriate method for letting the operator feel the force conveyed by using our system.展开更多
Simple, portable analytical devices are entering our daily lives for personal care, clinical analysis, allergen detection in food, and environmental monitoring. Smart- phones, as the most popular state-of-art mobile d...Simple, portable analytical devices are entering our daily lives for personal care, clinical analysis, allergen detection in food, and environmental monitoring. Smart- phones, as the most popular state-of-art mobile device, have remarkable potential for sensing applications. A growing set of physical-co-chemical sensors have been embedded; these include accelerometers, microphones, cameras, gyroscopes, and GPS units to access and perform data analysis. In this review, we discuss recent work focusing on smartphone sensing including representative electromag- netic, audio frequency, optical, and electrochemical sen- sors. The development of these capabilities will lead to more compact, lightweight, cost-effective, flexible, and durable devices in terms of their performances.展开更多
文摘Wavelet network, a class of neural network consisting of wavelets, is proposed to solve the inverse kinematics problem in robotic manipulator. A wavelet network suitable for dealing with multi-input and multi-output system is constructed. The network is optimized by reducing the number of wavelets handling large dimension problem according to the sample data. The algorithms for sparseness analysis of input data and fitting wavelets to the output data with orthogonal method are introduced. Then Levenberg-Marquardt algorithm is used to train the network. Simulation results showed that this method is capable of solving the inverse kinematics problem for PUMA560.
文摘Presents a novel compliant motion control for a robot hand using the Cartesian impedance approach based on fingertip force measurements. The fingertip can accurately track desired motion in free space and appear as mechanical impedance in constrained space. In the position based impedance control strategy, any switching mode in contact transition phase is not needed. The impedance parameters can be adjusted in a certain range according to various tasks. In this paper, the analysis of the finger’s kinematics and dynamics is given. Experimental results have shown the effectiveness of this control strategy.
文摘Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexterous design per the requirements of anthropomorphic robots. Underactuated self-adaptive theory is adopted to decrease the number of motors and weight. The fingers of HIT ARhand with multi phalanges have the same size as those of an adult hand. Force control is realized with the position sensor, joint torque sensor and fingertip torque sensor. From the 3D model, the whole hand, with the low power consumption DSP control board integrated in it, will weigh only 500 g. It will be assembled on a BIT-Anthropomorphic Robot.
基金Project(2009AA04Z209) supported by the National High Technology Research and Development Program of ChinaProject(R1090674) supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(51075363) supported by the National Natural Science Foundation of China
文摘Based on flexible pneumatic actuator(FPA),bending joint and side-sway joint,a new kind of pneumatic dexterous robot finger was developed.The finger is equipped with one five-component force sensor and four contactless magnetic rotary encoders.Mechanical parts and FPAs are integrated,which reduces the overall size of the finger.Driven by FPA directly,the joint output torque is more accurate and the friction and vibration can be effectively reduced.An improved adaptive genetic algorithm(IAGA) was adopted to solve the inverse kinematics problem of the redundant finger.The statics of the finger was analyzed and the relation between fingertip force and joint torque was built.Finally,the finger force/position control principle was introduced.Tracking experiments of fingertip force/position were carried out.The experimental results show that the fingertip position tracking error is within ±1 mm and the fingertip force tracking error is within ±0.4 N.It is also concluded from the theoretical and experimental results that the finger can be controlled and it has a good application prospect.
文摘A real-time wavelet multi-resolution analysis (MRA)-based fault detection algorithm is proposed. The first stage detailed MRA signals extracted from the original signals were used as the criteria for fault detection. By measuring sharp variations in the detailed MRA signals, faults in the motor driving system of pipeline detection robot arm could be detected. The fault type was then identified by comparison of the three-phase MRA sharp variations. The effects of the faults were examined. The simulation results show that this algorithm is effective and robust, it is promising for fault detection in a robot's joint driving system. The method is simple, rapid and it can operate in real time.
文摘A surgical manipulator has widely been used for laparoscopic surgery. It has been chosen mainly for the use in supporting human operations and in robot systems like the da Vinci surgical system. These manipulator systems are suitable for careful work, but they have a few problems. One of the problems is that the manipulator is not equipped with haptic sensing functions. Therefore, the operator must know the advanced techniques for visually detecting the physical contact state during surgical operations. These haptic sensing functions thus need to be incorporated into a surgical manipulator. We have developed hydraulic-driven forceps with a micro bearing and a bellows tube that can convey haptic sense to the operator. This system can measure the small forces acting on the tips of the forceps using Pascal's principle. A model of the system is provided from the relationship between the internal pressure of the bellows tube and the refraction angles of the forceps. It was confirmed using this model that the developed system makes it possible to estimate both the strength and the direction of the external force applied to the forceps by measuring the internal pressure of the bellows tube. An operator using a three-dimensional haptic device was able to feel the force response during an experiment in which they used the forceps to hold a blood vessel. This report describes the most appropriate method for letting the operator feel the force conveyed by using our system.
文摘Simple, portable analytical devices are entering our daily lives for personal care, clinical analysis, allergen detection in food, and environmental monitoring. Smart- phones, as the most popular state-of-art mobile device, have remarkable potential for sensing applications. A growing set of physical-co-chemical sensors have been embedded; these include accelerometers, microphones, cameras, gyroscopes, and GPS units to access and perform data analysis. In this review, we discuss recent work focusing on smartphone sensing including representative electromag- netic, audio frequency, optical, and electrochemical sen- sors. The development of these capabilities will lead to more compact, lightweight, cost-effective, flexible, and durable devices in terms of their performances.