The authors have prepared supramolecular systems as artificial metalloproteins composed of several chiral salen-type Mn(II) and Co(II) complexes in a HSA (human serum albumin) matrix. The docking was discussed b...The authors have prepared supramolecular systems as artificial metalloproteins composed of several chiral salen-type Mn(II) and Co(II) complexes in a HSA (human serum albumin) matrix. The docking was discussed by UV-vis spectral changes and a ligand-protein docking simulation program. After linearly polarized UV light irradiation, that anisotropy of molecular orientation of the complexes increased was confirmed by polarized IR spectra. The authors have observed that the electrochemical behavior of the aligned complexes incorporating diphenyl groups in HSA can be tuned without UV radiation damage of HSA higher structures.展开更多
文摘The authors have prepared supramolecular systems as artificial metalloproteins composed of several chiral salen-type Mn(II) and Co(II) complexes in a HSA (human serum albumin) matrix. The docking was discussed by UV-vis spectral changes and a ligand-protein docking simulation program. After linearly polarized UV light irradiation, that anisotropy of molecular orientation of the complexes increased was confirmed by polarized IR spectra. The authors have observed that the electrochemical behavior of the aligned complexes incorporating diphenyl groups in HSA can be tuned without UV radiation damage of HSA higher structures.