A surgical manipulator has widely been used for laparoscopic surgery. It has been chosen mainly for the use in supporting human operations and in robot systems like the da Vinci surgical system. These manipulator syst...A surgical manipulator has widely been used for laparoscopic surgery. It has been chosen mainly for the use in supporting human operations and in robot systems like the da Vinci surgical system. These manipulator systems are suitable for careful work, but they have a few problems. One of the problems is that the manipulator is not equipped with haptic sensing functions. Therefore, the operator must know the advanced techniques for visually detecting the physical contact state during surgical operations. These haptic sensing functions thus need to be incorporated into a surgical manipulator. We have developed hydraulic-driven forceps with a micro bearing and a bellows tube that can convey haptic sense to the operator. This system can measure the small forces acting on the tips of the forceps using Pascal's principle. A model of the system is provided from the relationship between the internal pressure of the bellows tube and the refraction angles of the forceps. It was confirmed using this model that the developed system makes it possible to estimate both the strength and the direction of the external force applied to the forceps by measuring the internal pressure of the bellows tube. An operator using a three-dimensional haptic device was able to feel the force response during an experiment in which they used the forceps to hold a blood vessel. This report describes the most appropriate method for letting the operator feel the force conveyed by using our system.展开更多
To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,wh...To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,which requires smooth operation of assembly robots,and flexible force control technology is necessary. A ground demonstration system is presented for in-orbit assembly focusing on flexible force control. A six-dimensional force/torque sensor and its data acquisition system are used to compensate for gravity. For translation and rotation,an algorithm for flexible control is proposed. A ground transportation demonstration verifies accuracy and smoothness of flexible force control,and the transportation and assembly task is completed automatically. The proposed system is suitable for the development of in-orbit assembly robots.展开更多
文摘A surgical manipulator has widely been used for laparoscopic surgery. It has been chosen mainly for the use in supporting human operations and in robot systems like the da Vinci surgical system. These manipulator systems are suitable for careful work, but they have a few problems. One of the problems is that the manipulator is not equipped with haptic sensing functions. Therefore, the operator must know the advanced techniques for visually detecting the physical contact state during surgical operations. These haptic sensing functions thus need to be incorporated into a surgical manipulator. We have developed hydraulic-driven forceps with a micro bearing and a bellows tube that can convey haptic sense to the operator. This system can measure the small forces acting on the tips of the forceps using Pascal's principle. A model of the system is provided from the relationship between the internal pressure of the bellows tube and the refraction angles of the forceps. It was confirmed using this model that the developed system makes it possible to estimate both the strength and the direction of the external force applied to the forceps by measuring the internal pressure of the bellows tube. An operator using a three-dimensional haptic device was able to feel the force response during an experiment in which they used the forceps to hold a blood vessel. This report describes the most appropriate method for letting the operator feel the force conveyed by using our system.
基金Supported by the National Natural Science Foundation of China(No.11672290)
文摘To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,which requires smooth operation of assembly robots,and flexible force control technology is necessary. A ground demonstration system is presented for in-orbit assembly focusing on flexible force control. A six-dimensional force/torque sensor and its data acquisition system are used to compensate for gravity. For translation and rotation,an algorithm for flexible control is proposed. A ground transportation demonstration verifies accuracy and smoothness of flexible force control,and the transportation and assembly task is completed automatically. The proposed system is suitable for the development of in-orbit assembly robots.