With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation method...With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation methods very attractive. In this paper, we propose a two-phase rate adaptation strategy to improve users' real-time video Qo E. First, to measure and assess video Qo E, we provide a continuous Qo E prediction engine modeled by RNN recurrent neural network. Different from traditional Qo E models which consider the Qo E-aware factors separately or incompletely, our RNN-Qo E model accounts for three descriptive factors(video quality, rebuffering, and rate change) and reflects the impact of cognitive memory and recency. Besides, the video playing is separated into the initial startup phase and the steady playback phase, and we takes different optimization goals for each phase: the former aims at shortening the startup delay while the latter ameliorates the video quality and the rebufferings. Simulation results have shown that RNN-Qo E can follow the subjective Qo E quite well, and the proposed strategy can effectively reduce the occurrence of rebufferings caused by the mismatch between the requested video rates and the fluctuated throughput and attains standout performance on real-time Qo E compared with classical rate adaption methods.展开更多
In DVB-IPDC system, due to the constraints of handheld devices and the broadcast nature of wireless network, packet loss is inevitable. ECDR-NC proposed is a retransmission encoding packet selection algorithm based on...In DVB-IPDC system, due to the constraints of handheld devices and the broadcast nature of wireless network, packet loss is inevitable. ECDR-NC proposed is a retransmission encoding packet selection algorithm based on the dynamic information updating, which can find the current most effective complete decoding packet. ECDR-NC can not only avoid the redundant encoding packets due to the overlapping among encoding packets, but also reduce the computational complexity compared with the traditional encoding schemes. Furthermore, the retransmission upper bound of ECDR-NC is fully controlled. In time-sensitive applications, to maximize the aggregate number of recovery packets while minimizing the total number of discarded packets due to the time limit according to the priority preference, the adaptive priority scheme EPNC is formulized, and the weighted relation graph is constructed to find the maximum-weighted encoding packets sequence according to the decoding gains. In the same network environment, the performances comparisons between PNC and EPNC show that EPNC is more efficient and more rational, and the average discarded packets ratios ofEPNC can be reduced about 18%~27%. The main contributions of this paper are an effective retransmission encoding packet selection algorithm ECDR-NC proposed, and a new adaptive priority recovery scheme EPNC introduced into DVB-IPDC system.展开更多
基金supported by the National Nature Science Foundation of China(NSFC 60622110,61471220,91538107,91638205)National Basic Research Project of China(973,2013CB329006),GY22016058
文摘With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation methods very attractive. In this paper, we propose a two-phase rate adaptation strategy to improve users' real-time video Qo E. First, to measure and assess video Qo E, we provide a continuous Qo E prediction engine modeled by RNN recurrent neural network. Different from traditional Qo E models which consider the Qo E-aware factors separately or incompletely, our RNN-Qo E model accounts for three descriptive factors(video quality, rebuffering, and rate change) and reflects the impact of cognitive memory and recency. Besides, the video playing is separated into the initial startup phase and the steady playback phase, and we takes different optimization goals for each phase: the former aims at shortening the startup delay while the latter ameliorates the video quality and the rebufferings. Simulation results have shown that RNN-Qo E can follow the subjective Qo E quite well, and the proposed strategy can effectively reduce the occurrence of rebufferings caused by the mismatch between the requested video rates and the fluctuated throughput and attains standout performance on real-time Qo E compared with classical rate adaption methods.
基金supported by the National High Technology Research and Development Program of China(863 Program )(Grant No: 2015AA01A705)the National Basic Research Program of China (Grant No:2012CB316100)+1 种基金Key Grant Project of Chinese Ministry of Education (Grant No:311031 100)Young Innovative Research Team of Sichuan Province (Grant No:2011JTD0007)
文摘In DVB-IPDC system, due to the constraints of handheld devices and the broadcast nature of wireless network, packet loss is inevitable. ECDR-NC proposed is a retransmission encoding packet selection algorithm based on the dynamic information updating, which can find the current most effective complete decoding packet. ECDR-NC can not only avoid the redundant encoding packets due to the overlapping among encoding packets, but also reduce the computational complexity compared with the traditional encoding schemes. Furthermore, the retransmission upper bound of ECDR-NC is fully controlled. In time-sensitive applications, to maximize the aggregate number of recovery packets while minimizing the total number of discarded packets due to the time limit according to the priority preference, the adaptive priority scheme EPNC is formulized, and the weighted relation graph is constructed to find the maximum-weighted encoding packets sequence according to the decoding gains. In the same network environment, the performances comparisons between PNC and EPNC show that EPNC is more efficient and more rational, and the average discarded packets ratios ofEPNC can be reduced about 18%~27%. The main contributions of this paper are an effective retransmission encoding packet selection algorithm ECDR-NC proposed, and a new adaptive priority recovery scheme EPNC introduced into DVB-IPDC system.