Interacting with digital contents in 3 D is an essential task in various applications such as modeling packages, gaming, virtual reality, etc. Traditional interfaces using keyboard and mouse or trackball usually requi...Interacting with digital contents in 3 D is an essential task in various applications such as modeling packages, gaming, virtual reality, etc. Traditional interfaces using keyboard and mouse or trackball usually require a non-trivial amount of working space as well as a learning process. We present the design of EZ-Manipulator, a new 3 D manipulation interface using smartphones that supports mobile, fast, and ambiguity-free interaction with 3 D objects. Our system leverages the built-in multi-touch input and gyroscope sensor of smartphones to achieve 9 degrees-of-freedom axis-constrained manipulation and free-form rotation.Using EZ-Manipulator to manipulate objects in 3 D is easy. The user merely has to perform intuitive singleor two-finger gestures and rotate the hand-held device to perform manipulations at fine-grained and coarse levels respectively. We further investigate the ambiguity in manipulation introduced by indirect manipulations using a multi-touch interface, and propose a dynamic virtual camera adjustment to effectively resolve the ambiguity. A preliminary study shows that our system has significant lower task completion time compared to conventional use of a keyboard–mouse interface, and provides a positive user experience to both novices and experts.展开更多
Auto-focus is very important for capturing sharp human face centered images in digital and smart phone cameras. With the development of image sensor technology, these cameras support more and more highresolution image...Auto-focus is very important for capturing sharp human face centered images in digital and smart phone cameras. With the development of image sensor technology, these cameras support more and more highresolution images to be processed. Currently it is difficult to support fast auto-focus at low power consumption on high-resolution images. This work proposes an efficient architecture for an Ada Boost-based face-priority auto-focus. The architecture supports block-based integral image computation to improve the processing speed on high-resolution images; meanwhile, it is reconfigurable so that it enables the sub-window adaptive cascade classification, which greatly improves the processing speed and reduces power consumption. Experimental results show that 96% detection rate in average and 58 fps(frame per second) detection speed are achieved for the1080p(1920×1080) images. Compared with the state-of-the-art work, the detection speed is greatly improved and power consumption is largely reduced.展开更多
文摘Interacting with digital contents in 3 D is an essential task in various applications such as modeling packages, gaming, virtual reality, etc. Traditional interfaces using keyboard and mouse or trackball usually require a non-trivial amount of working space as well as a learning process. We present the design of EZ-Manipulator, a new 3 D manipulation interface using smartphones that supports mobile, fast, and ambiguity-free interaction with 3 D objects. Our system leverages the built-in multi-touch input and gyroscope sensor of smartphones to achieve 9 degrees-of-freedom axis-constrained manipulation and free-form rotation.Using EZ-Manipulator to manipulate objects in 3 D is easy. The user merely has to perform intuitive singleor two-finger gestures and rotate the hand-held device to perform manipulations at fine-grained and coarse levels respectively. We further investigate the ambiguity in manipulation introduced by indirect manipulations using a multi-touch interface, and propose a dynamic virtual camera adjustment to effectively resolve the ambiguity. A preliminary study shows that our system has significant lower task completion time compared to conventional use of a keyboard–mouse interface, and provides a positive user experience to both novices and experts.
基金supported in part by China Major Science and Technology (S&T) Project (Grant No. 2013ZX01033-001-001-003)National High-Tech R&D Program of China (863) (Grant Nos. 2012AA012701, 2012AA0109-04)+2 种基金National Natural Science Foundation of China (Grant No. 61274131)International S&T Cooperation Project of China (Grant No. 2012DFA11170)Importation and Development of the High-Caliber Talents Project of Beijing Municipal Institutions (Grant No. YETP0163)
文摘Auto-focus is very important for capturing sharp human face centered images in digital and smart phone cameras. With the development of image sensor technology, these cameras support more and more highresolution images to be processed. Currently it is difficult to support fast auto-focus at low power consumption on high-resolution images. This work proposes an efficient architecture for an Ada Boost-based face-priority auto-focus. The architecture supports block-based integral image computation to improve the processing speed on high-resolution images; meanwhile, it is reconfigurable so that it enables the sub-window adaptive cascade classification, which greatly improves the processing speed and reduces power consumption. Experimental results show that 96% detection rate in average and 58 fps(frame per second) detection speed are achieved for the1080p(1920×1080) images. Compared with the state-of-the-art work, the detection speed is greatly improved and power consumption is largely reduced.