“效果出色、速度快捷的HP Color LaserJet 5550dn彩色激光打印机让我们竞标更具竞争力。我们每次的投标任务时间紧、任务重,需要在很短的时间内打印大量的精美标书,因此打印效果和打印速度是我们对激光打印机最重要的要求。在与HP Colo...“效果出色、速度快捷的HP Color LaserJet 5550dn彩色激光打印机让我们竞标更具竞争力。我们每次的投标任务时间紧、任务重,需要在很短的时间内打印大量的精美标书,因此打印效果和打印速度是我们对激光打印机最重要的要求。在与HP Color LaserJet 5550dn共同工作的这段时间,证明了我们当初正确的选择—它的高品质彩色打印和快速的打印效果,帮助我们降低了成本,提高了工作效率、增加了企业竞争力。”展开更多
Titanium aluminum nitride (TiAlN) film, as a possible substitute for the conventional tantalum nitride (TAN) or tantalum-aluminum (TaAl) heater resistor in inkjet printheads, was deposited on a Si(100) substra...Titanium aluminum nitride (TiAlN) film, as a possible substitute for the conventional tantalum nitride (TAN) or tantalum-aluminum (TaAl) heater resistor in inkjet printheads, was deposited on a Si(100) substrate at 400 ℃ by radio frequency (RF) magnetron co-sputtering using titanium nitride (TIN) and aluminum nitride (AlN) as ceramic targets. The temperature coefficient of resistivity (TCR) and oxidation resistance, which are the most important properties of a heat resistor, were studied depending on the plasma power density applied during sputtering. With the increasing plasma power density, the crystallinity, grain size and surface roughness of the applied film increased, resulting in less grain boundaries with large grains. The Ti, Al and N binding energies obtained from X-ray photoelectron spectroscopy analysis disclosed the nitrogen deficit in the TiAlN stoichiometry that makes the films more electrically resistive. The highest oxidation resistance and the lowest TCR of-765.43×10^-6 K-l were obtained by applying the highest plasma power density.展开更多
In order to build a ceramic component by inkjet printing, the object must be fabricated through the interaction and solidification of drops, typically in the range of 10–100 p L. In order to achieve this goal, stable...In order to build a ceramic component by inkjet printing, the object must be fabricated through the interaction and solidification of drops, typically in the range of 10–100 p L. In order to achieve this goal, stable ceramic inks must be developed. These inks should satisfy specific rheological conditions that can be illustrated within a parameter space defined by the Reynolds and Weber numbers. Printed drops initially deform on impact with a surface by dynamic dissipative processes, but then spread to an equilibrium shape defined by capillarity. We can identify the processes by which these drops interact to form linear features during printing, but there is a poorer level of understanding as to how 2D and 3D structures form. The stability of 2D sheets of ink appears to be possible over a more limited range of process conditions that is seen with the formation of lines. In most cases, the ink solidifies through evaporation and there is a need to control the drying process to eliminate the "coffee ring" defect. Despite these uncertainties, there have been a large number of reports on the successful use of inkjet printing for the manufacture of small ceramic components from a number of different ceramics. This technique offers good prospects as a future manufacturing technique. This review identifies potential areas for future research to improve our understanding of this manufacturing method.展开更多
Novel hydrophilic NaYF4:Yb^3+,Tm^3+@NaGdF4:Ce^3+,Eu^3+double-jacket microtubes(DJMTs)with upconversion/downconversion dual-mode luminescence were designed and prepared through epitaxial growth of NaGdF4:Ce^3+,Eu^3+she...Novel hydrophilic NaYF4:Yb^3+,Tm^3+@NaGdF4:Ce^3+,Eu^3+double-jacket microtubes(DJMTs)with upconversion/downconversion dual-mode luminescence were designed and prepared through epitaxial growth of NaGdF4:Ce^3+,Eu^3+shell onto the NaYF4:Yb^3+,Tm^3+microtube via poly(acrylic acid)(PAA)mediated hydrothermal method.It is demonstrated that PAA ligand played an important role in guiding the direct growth of NaGdF4:Ce^3+,Eu^3+shell onto the surface of NaYF4:Yb^3+,Tm^3+parent microtubes.The growth of NaGdF4:Ce^3+,Eu^3+shell experienced a crystal phase transition fromβ-NaGdF4 andβ-NaYF4 mixture toβ-NaYF4@NaGdF4 composite crystal,and morphology evolution from mixture ofβ-NaGdF4:Ce^3+,Eu^3+nanorods andβ-NaYF4:Yb^3+,Tm^3+microtubes to NaYF4:Yb^3+,Tm^3+@NaGdF4:Ce^3+,Eu^3+DJMTs.The formation mechanism of DJMTs was the dissolution−renucleation ofβ-NaGdF4:Ce^3+,Eu^3+nanorods and the growth ofβ-NaGdF4:Ce^3+,Eu^3+shell via the classical Ostwald ripening mechanism.The as-prepared DJMTs could exhibit blue upconversion and red downconversion luminescence,which was further made into environmentally benign luminescent inks for creating highly secured and fluorescent-based anti-counterfeiting patterns via inkjet printing.展开更多
IrO2-TiO2 thin films were prepared by atomic layer deposition using Ir(EtCp)(COD) and titanium isopropoxide (TTIP). The resistivity of IrO2-TiO2 thin films can be easily controlled from 1 500 to 356.7 μΩ·...IrO2-TiO2 thin films were prepared by atomic layer deposition using Ir(EtCp)(COD) and titanium isopropoxide (TTIP). The resistivity of IrO2-TiO2 thin films can be easily controlled from 1 500 to 356.7 μΩ·cm by the IrO2 intermixing ratio from 0.55 to 0.78 in the IrO2-TiO2 thin films. The low temperature coefficient of resistance(TCR) values can be obtained by adopting IrO2-TiO2 composite thin films. Moreover, the change in the resistivity of IrO2-TiO2 thin films was below 10% even after O2 annealing process at 600 ℃. The step stress test results show that IrO2-TiO2 films have better characteristics than conventional TaN08 heater resistor. Therefore, IrO2-TiO2 composite thin films can be used as a heater resistor material in thermal inkjet printhead.展开更多
文摘“效果出色、速度快捷的HP Color LaserJet 5550dn彩色激光打印机让我们竞标更具竞争力。我们每次的投标任务时间紧、任务重,需要在很短的时间内打印大量的精美标书,因此打印效果和打印速度是我们对激光打印机最重要的要求。在与HP Color LaserJet 5550dn共同工作的这段时间,证明了我们当初正确的选择—它的高品质彩色打印和快速的打印效果,帮助我们降低了成本,提高了工作效率、增加了企业竞争力。”
基金Project (M-2009-01-0029) supported by Fundamental R&D Program for Core Technology of Materials, Korea
文摘Titanium aluminum nitride (TiAlN) film, as a possible substitute for the conventional tantalum nitride (TAN) or tantalum-aluminum (TaAl) heater resistor in inkjet printheads, was deposited on a Si(100) substrate at 400 ℃ by radio frequency (RF) magnetron co-sputtering using titanium nitride (TIN) and aluminum nitride (AlN) as ceramic targets. The temperature coefficient of resistivity (TCR) and oxidation resistance, which are the most important properties of a heat resistor, were studied depending on the plasma power density applied during sputtering. With the increasing plasma power density, the crystallinity, grain size and surface roughness of the applied film increased, resulting in less grain boundaries with large grains. The Ti, Al and N binding energies obtained from X-ray photoelectron spectroscopy analysis disclosed the nitrogen deficit in the TiAlN stoichiometry that makes the films more electrically resistive. The highest oxidation resistance and the lowest TCR of-765.43×10^-6 K-l were obtained by applying the highest plasma power density.
文摘In order to build a ceramic component by inkjet printing, the object must be fabricated through the interaction and solidification of drops, typically in the range of 10–100 p L. In order to achieve this goal, stable ceramic inks must be developed. These inks should satisfy specific rheological conditions that can be illustrated within a parameter space defined by the Reynolds and Weber numbers. Printed drops initially deform on impact with a surface by dynamic dissipative processes, but then spread to an equilibrium shape defined by capillarity. We can identify the processes by which these drops interact to form linear features during printing, but there is a poorer level of understanding as to how 2D and 3D structures form. The stability of 2D sheets of ink appears to be possible over a more limited range of process conditions that is seen with the formation of lines. In most cases, the ink solidifies through evaporation and there is a need to control the drying process to eliminate the "coffee ring" defect. Despite these uncertainties, there have been a large number of reports on the successful use of inkjet printing for the manufacture of small ceramic components from a number of different ceramics. This technique offers good prospects as a future manufacturing technique. This review identifies potential areas for future research to improve our understanding of this manufacturing method.
基金Project(51874129)supported by the National Natural Science Foundation of ChinaProjects(2018JJ3115,2019JJ60049)supported by the Science Foundation of Hunan Province,ChinaProjects(19B153,19B158)supported by the Scientific Research Fund of Hunan Provincial Education Department,China。
文摘Novel hydrophilic NaYF4:Yb^3+,Tm^3+@NaGdF4:Ce^3+,Eu^3+double-jacket microtubes(DJMTs)with upconversion/downconversion dual-mode luminescence were designed and prepared through epitaxial growth of NaGdF4:Ce^3+,Eu^3+shell onto the NaYF4:Yb^3+,Tm^3+microtube via poly(acrylic acid)(PAA)mediated hydrothermal method.It is demonstrated that PAA ligand played an important role in guiding the direct growth of NaGdF4:Ce^3+,Eu^3+shell onto the surface of NaYF4:Yb^3+,Tm^3+parent microtubes.The growth of NaGdF4:Ce^3+,Eu^3+shell experienced a crystal phase transition fromβ-NaGdF4 andβ-NaYF4 mixture toβ-NaYF4@NaGdF4 composite crystal,and morphology evolution from mixture ofβ-NaGdF4:Ce^3+,Eu^3+nanorods andβ-NaYF4:Yb^3+,Tm^3+microtubes to NaYF4:Yb^3+,Tm^3+@NaGdF4:Ce^3+,Eu^3+DJMTs.The formation mechanism of DJMTs was the dissolution−renucleation ofβ-NaGdF4:Ce^3+,Eu^3+nanorods and the growth ofβ-NaGdF4:Ce^3+,Eu^3+shell via the classical Ostwald ripening mechanism.The as-prepared DJMTs could exhibit blue upconversion and red downconversion luminescence,which was further made into environmentally benign luminescent inks for creating highly secured and fluorescent-based anti-counterfeiting patterns via inkjet printing.
基金supported by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Republic of Koreasupported by Basic Science Research program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0001-226)
文摘IrO2-TiO2 thin films were prepared by atomic layer deposition using Ir(EtCp)(COD) and titanium isopropoxide (TTIP). The resistivity of IrO2-TiO2 thin films can be easily controlled from 1 500 to 356.7 μΩ·cm by the IrO2 intermixing ratio from 0.55 to 0.78 in the IrO2-TiO2 thin films. The low temperature coefficient of resistance(TCR) values can be obtained by adopting IrO2-TiO2 composite thin films. Moreover, the change in the resistivity of IrO2-TiO2 thin films was below 10% even after O2 annealing process at 600 ℃. The step stress test results show that IrO2-TiO2 films have better characteristics than conventional TaN08 heater resistor. Therefore, IrO2-TiO2 composite thin films can be used as a heater resistor material in thermal inkjet printhead.