期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
3D打印技术在汽车制造与维修领域应用研究 被引量:6
1
作者 曾庆吉 《内燃机与配件》 2018年第3期241-242,共2页
随着我国汽车保有量的不断增加,汽车维修行业的发展也迎来了难得的发展契机。国内汽车维修行业在市场环境下的竞争日益激烈,企业为了谋求进一步的发展,需要综合采取技术革新、控制生产成本、提升服务实效等方面的手段,为企业的健康快速... 随着我国汽车保有量的不断增加,汽车维修行业的发展也迎来了难得的发展契机。国内汽车维修行业在市场环境下的竞争日益激烈,企业为了谋求进一步的发展,需要综合采取技术革新、控制生产成本、提升服务实效等方面的手段,为企业的健康快速发展奠定良好的基础。随着3D打印技术的不断成熟,该技术在汽车维修领域中得到了越来越广泛的应用,进而形成了一轮新技术变革。本文对3D打印技术的有关原理、技术应用特点以及在汽车制造与维修领域的具体应用方法进行了详细的介绍。 展开更多
关键词 应用研究 维修领域 汽车制造3D打印技术
下载PDF
科学串串烧
2
《少年科普世界》 2011年第12期14-15,共2页
汽车能打印出来,光影也能涂鸦,童话中的魔镜变成了现实,屏幕竟然能像像胶一样拉伸……这里的一切令人匪夷所思,让我们走进科学串串烧一看究竞吧!
关键词 科学学 打印汽车 打印技术 打印
原文传递
A vision-centered multi-sensor fusing approach to self-localization and obstacle perception for robotic cars 被引量:4
3
作者 Jian-ru XUE Di WANG +3 位作者 Shao-yi DU Di-xiao CUI Yong HUANG Nan-ning ZHENG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第1期122-138,共17页
Most state-of-the-art robotic cars' perception systems are quite different from the way a human driver understands traffic environments. First, humans assimilate information from the traffic scene mainly through visu... Most state-of-the-art robotic cars' perception systems are quite different from the way a human driver understands traffic environments. First, humans assimilate information from the traffic scene mainly through visual perception, while the machine perception of traffic environments needs to fuse information from several different kinds of sensors to meet safety-critical requirements. Second, a robotic car requires nearly 100% correct perception results for its autonomous driving, while an experienced human driver works well with dynamic traffic environments, in which machine perception could easily produce noisy perception results. In this paper, we propose a vision-centered multi-sensor fusing framework for a traffic environment perception approach to autonomous driving, which fuses camera, LIDAR, and GIS information consistently via both geometrical and semantic constraints for efficient self- localization and obstacle perception. We also discuss robust machine vision algorithms that have been successfully integrated with the framework and address multiple levels of machine vision techniques, from collecting training data, efficiently processing sensor data, and extracting low-level features, to higher-level object and environment mapping. The proposed framework has been tested extensively in actual urban scenes with our self-developed robotic cars for eight years. The empirical results validate its robustness and efficiency. 展开更多
关键词 Visual perception SELF-LOCALIZATION Mapping Motion planning Robotic car
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部