Fischer‐Tropsch synthesis(FTS)has the potential to be a powerful strategy for producing liquid fuels from syngas if highly selective catalysts can be developed.Herein,a series of iron nanoparticle catalysts encapsula...Fischer‐Tropsch synthesis(FTS)has the potential to be a powerful strategy for producing liquid fuels from syngas if highly selective catalysts can be developed.Herein,a series of iron nanoparticle catalysts encapsulated by nitrogen‐doped graphitic carbon were prepared by a one‐step pyrolysis of a ferric L‐glutamic acid complex.The FeC‐800 catalyst pyrolyzed at 800°C showed excellent catalytic activity(239.4μmolCO gFe–1 s–1),high C5–C11 selectivity(49%),and good stability in FTS.The high dispersion of ferric species combined with a well‐encapsulated structure can effectively inhibit the migration of iron nanoparticles during the reaction process,which is beneficial for high activity and good stability.The nitrogen‐doped graphitic carbon shell can act as an electron donor to the iron particles,thus promoting CO activation and expediting the formation of Fe5C2,which is the key factor for obtaining high C5–C11 selectivity.展开更多
The intrinsic strains at the confinement interface of iron carbide with graphene play important roles in the catalytic Fischer-Tropsch synthesis.In this study,we performed theoretical study of the biaxial strain effec...The intrinsic strains at the confinement interface of iron carbide with graphene play important roles in the catalytic Fischer-Tropsch synthesis.In this study,we performed theoretical study of the biaxial strain effects on the CO adsorption and dissociation on the Fe_(2)C(121)surface covered by graphene(Fe_(2)C@graphene).By varying the lattice strains within a range of±5%,the apparent energy barriers(E_(a,app))correlate with the adsorption energies(E_(ad))in nonlinear scaling relations for the direct and H-assisted CO dissociation at the Fe_(2)C active sites,which is normal Br∅nsted-Evans-Polanyi relation for those at the graphene sites.The nonlinear scaling relations can be interpreted by the strain effects on the confinement distances in the adsorption and transition states.This study provides a deep understanding of the intrinsic strain effects of Fe_(2)C@graphene for CO activation.展开更多
文摘Fischer‐Tropsch synthesis(FTS)has the potential to be a powerful strategy for producing liquid fuels from syngas if highly selective catalysts can be developed.Herein,a series of iron nanoparticle catalysts encapsulated by nitrogen‐doped graphitic carbon were prepared by a one‐step pyrolysis of a ferric L‐glutamic acid complex.The FeC‐800 catalyst pyrolyzed at 800°C showed excellent catalytic activity(239.4μmolCO gFe–1 s–1),high C5–C11 selectivity(49%),and good stability in FTS.The high dispersion of ferric species combined with a well‐encapsulated structure can effectively inhibit the migration of iron nanoparticles during the reaction process,which is beneficial for high activity and good stability.The nitrogen‐doped graphitic carbon shell can act as an electron donor to the iron particles,thus promoting CO activation and expediting the formation of Fe5C2,which is the key factor for obtaining high C5–C11 selectivity.
基金supported by the National Natural Science Foundation of China(21972170,22072184)the Fund for Academic Innovation Teams of South-Central Minzu University(XTZ24013)
文摘The intrinsic strains at the confinement interface of iron carbide with graphene play important roles in the catalytic Fischer-Tropsch synthesis.In this study,we performed theoretical study of the biaxial strain effects on the CO adsorption and dissociation on the Fe_(2)C(121)surface covered by graphene(Fe_(2)C@graphene).By varying the lattice strains within a range of±5%,the apparent energy barriers(E_(a,app))correlate with the adsorption energies(E_(ad))in nonlinear scaling relations for the direct and H-assisted CO dissociation at the Fe_(2)C active sites,which is normal Br∅nsted-Evans-Polanyi relation for those at the graphene sites.The nonlinear scaling relations can be interpreted by the strain effects on the confinement distances in the adsorption and transition states.This study provides a deep understanding of the intrinsic strain effects of Fe_(2)C@graphene for CO activation.