This paper presents a model and analysis for a flexible link with non-collocations of sensors and actuators. It shows the changes in the system dynamics and the appearance of zeroes in the right-plan complex, turning ...This paper presents a model and analysis for a flexible link with non-collocations of sensors and actuators. It shows the changes in the system dynamics and the appearance of zeroes in the right-plan complex, turning the system a non-minimum phase system. The performance of the PID (proportional-integral-derivative) and LQR (linear quadratic regulator) controller are discussed considering the zero dynamics of the system in three points of special interest: (I) the collocated case, when the sensor is in the base of the link; (2) the critical case, where the system starts to present zeroes in the right-plan complex and (3) the limit case, when the sensors are in the end point of the flexible link. Investigation for a simple rigid-flexible model with one mode, in the three cases, the PID and LQR controller performance are damage. To deal with this kind of problem, new control techniques should be developed.展开更多
A novel circulation control technique is proposed to overcome the shortcomings of blowing jet circulation control, which uses the synthetic jet as the actuator and avoids the limitation about air supply requirement. T...A novel circulation control technique is proposed to overcome the shortcomings of blowing jet circulation control, which uses the synthetic jet as the actuator and avoids the limitation about air supply requirement. The effectiveness of synthetic jet circulation control to enhance lift of NCCR1510-7067N airfoil is confirmed by solving the 2-D unsteady Reynolds-averaged Na- vier-Stokes equations. The aerodynamic characteristics and the flow structure (especially close to the trailing edge) of NCCR 1510-7067N airfoil at zero angle of attack are also presented to discuss the mechanism of lift enhancement of the airfoil with synthetic jet circulation control. The results indicate that the synthetic jet can effectively delay the separation point on the airfoil trailing edge and increase the circulation and lift of the airfoil by Coanda effect. The numerical simulation results demonstrate that the lift augmentation efficiency with synthetic jet circulation control reaches △C1/Cμ,=114 in the present study, which is much higher than the value 12.1 in the case with steady blowing jet circulation control.展开更多
文摘This paper presents a model and analysis for a flexible link with non-collocations of sensors and actuators. It shows the changes in the system dynamics and the appearance of zeroes in the right-plan complex, turning the system a non-minimum phase system. The performance of the PID (proportional-integral-derivative) and LQR (linear quadratic regulator) controller are discussed considering the zero dynamics of the system in three points of special interest: (I) the collocated case, when the sensor is in the base of the link; (2) the critical case, where the system starts to present zeroes in the right-plan complex and (3) the limit case, when the sensors are in the end point of the flexible link. Investigation for a simple rigid-flexible model with one mode, in the three cases, the PID and LQR controller performance are damage. To deal with this kind of problem, new control techniques should be developed.
基金supported by the National Natural Science Foundation of China (Grant No. 10872021)the Open Research Project of the State Key Laboratory of Mechanical System and Vibration (Grant No. MSV-2012-09)
文摘A novel circulation control technique is proposed to overcome the shortcomings of blowing jet circulation control, which uses the synthetic jet as the actuator and avoids the limitation about air supply requirement. The effectiveness of synthetic jet circulation control to enhance lift of NCCR1510-7067N airfoil is confirmed by solving the 2-D unsteady Reynolds-averaged Na- vier-Stokes equations. The aerodynamic characteristics and the flow structure (especially close to the trailing edge) of NCCR 1510-7067N airfoil at zero angle of attack are also presented to discuss the mechanism of lift enhancement of the airfoil with synthetic jet circulation control. The results indicate that the synthetic jet can effectively delay the separation point on the airfoil trailing edge and increase the circulation and lift of the airfoil by Coanda effect. The numerical simulation results demonstrate that the lift augmentation efficiency with synthetic jet circulation control reaches △C1/Cμ,=114 in the present study, which is much higher than the value 12.1 in the case with steady blowing jet circulation control.