The nonlinear static characteristic of a piezoelectric unimorph cantilever micro actuator driven by a strong applied electric field is studied based on the couple stress theory.The cantilever actuator consists of a pi...The nonlinear static characteristic of a piezoelectric unimorph cantilever micro actuator driven by a strong applied electric field is studied based on the couple stress theory.The cantilever actuator consists of a piezoelectric layer,a passive(elastic)layer and two electrode layers.First,the nonlinear static characteristic of the actuator caused by the electrostriction of the piezoelectric layer under a strong applied electric field is analyzed using the Rayleigh-Ritz method.Secondly,since the thickness of the cantilever beam is in micro scale and there exists a size effect,the size dependence of the deformation behavior is evaluated using the couple stress theory.The results show that the nonlinearities of the beam deflection increase along with the increase of the applied electric field which means that softening of the micro beam rigidity exists when a strong external electric field is applied.Meanwhile,the optimal value of the thickness ratio for the passive layer and the piezoelectric layer is not around 1.0 which is usually adopted by some previous researchers.Since there exists a size effect of the micro beam deflection,the optimal value of this thickness ratio should be greater than 1.0 in micro scale.展开更多
To simulate the process of electrode operation, a dynamic model describing the electrode system of three-phase electric arc furnace was developed. This new model can be divided into three submodels in terms of the pra...To simulate the process of electrode operation, a dynamic model describing the electrode system of three-phase electric arc furnace was developed. This new model can be divided into three submodels in terms of the practical situation. They are the power supply system model the electric arc model and the hydraulic actuator system model. According to the basic circuit theory, the power supply system model where the high voltage transmission circuit and mutual inductances were considered, was set up. The electric arc model, which was novel for the electrode control, served as the electrical load and was connected to the power supply system model. The hydraulic actuator system model consists of the proportional valve part that is modeled to capture the dead-zone nonlinear characteristics and the hydraulic cylinder part where the impact of the load force is taken into account. By comparing simulation data and actual data, the results show that the electrode system model is proved to be accurate.展开更多
基金The National Natural Science Foundation of China(No.10772086,10772085)
文摘The nonlinear static characteristic of a piezoelectric unimorph cantilever micro actuator driven by a strong applied electric field is studied based on the couple stress theory.The cantilever actuator consists of a piezoelectric layer,a passive(elastic)layer and two electrode layers.First,the nonlinear static characteristic of the actuator caused by the electrostriction of the piezoelectric layer under a strong applied electric field is analyzed using the Rayleigh-Ritz method.Secondly,since the thickness of the cantilever beam is in micro scale and there exists a size effect,the size dependence of the deformation behavior is evaluated using the couple stress theory.The results show that the nonlinearities of the beam deflection increase along with the increase of the applied electric field which means that softening of the micro beam rigidity exists when a strong external electric field is applied.Meanwhile,the optimal value of the thickness ratio for the passive layer and the piezoelectric layer is not around 1.0 which is usually adopted by some previous researchers.Since there exists a size effect of the micro beam deflection,the optimal value of this thickness ratio should be greater than 1.0 in micro scale.
基金Projects(2007AA04Z194, 2007AA041401) supported by the National High-Tech Research and Development Program of China
文摘To simulate the process of electrode operation, a dynamic model describing the electrode system of three-phase electric arc furnace was developed. This new model can be divided into three submodels in terms of the practical situation. They are the power supply system model the electric arc model and the hydraulic actuator system model. According to the basic circuit theory, the power supply system model where the high voltage transmission circuit and mutual inductances were considered, was set up. The electric arc model, which was novel for the electrode control, served as the electrical load and was connected to the power supply system model. The hydraulic actuator system model consists of the proportional valve part that is modeled to capture the dead-zone nonlinear characteristics and the hydraulic cylinder part where the impact of the load force is taken into account. By comparing simulation data and actual data, the results show that the electrode system model is proved to be accurate.