The paper deals with miniature actuators and scaling effect, which occurs in using of these actuators. Scaling effect describes how much decreased performance in miniaturized actuator is. Scaling effect law helps to m...The paper deals with miniature actuators and scaling effect, which occurs in using of these actuators. Scaling effect describes how much decreased performance in miniaturized actuator is. Scaling effect law helps to make perfect decision for right type of actuator. This analysis should be as the first strategic step for actuator selection. Research in area of in-pipe machine shows that scaling effect in both used actuator types (electromagnetic and piezoelectric) is the same. Passive forces cannot be neglected, because of their values, which are comparable with active forces in system. There is a potential risk, that designed system will have bigger passive forces than active forces and system cannot fulfill requirements. Energy sources selection has also important role in system design with respecting the energy requirements of selected actuator. Consequently, energy balance is also important viewpoint for actuator selection.展开更多
The study of finite nuclei containing antibaryon(s) in addition to nucleons is an interesting topic in nuclear physics. The calculation of the lifetime of an antibaryon embedded in a nucleus was performed in the fra...The study of finite nuclei containing antibaryon(s) in addition to nucleons is an interesting topic in nuclear physics. The calculation of the lifetime of an antibaryon embedded in a nucleus was performed in the framework of the standard quantum field theory. It was shown that the annihilation probability of the antibaryon in nuclei is strongly dependent on the effective masses of mesons involved in the annihilation channels. The contribution of the Dirac sea to the annihilation probability makes the lifetime of the antibaryon short. If the Dirac sea effect is neglected, the lifetime of the bound antibaryon tends to be longer with the nuclear density increasing. Particularly, when the nuclear density is larger than a critical value, the antibaryon may exist stably in a nucleus.展开更多
文摘The paper deals with miniature actuators and scaling effect, which occurs in using of these actuators. Scaling effect describes how much decreased performance in miniaturized actuator is. Scaling effect law helps to make perfect decision for right type of actuator. This analysis should be as the first strategic step for actuator selection. Research in area of in-pipe machine shows that scaling effect in both used actuator types (electromagnetic and piezoelectric) is the same. Passive forces cannot be neglected, because of their values, which are comparable with active forces in system. There is a potential risk, that designed system will have bigger passive forces than active forces and system cannot fulfill requirements. Energy sources selection has also important role in system design with respecting the energy requirements of selected actuator. Consequently, energy balance is also important viewpoint for actuator selection.
基金Supported by National Natural Science Foundation of China under Grant No.10775059Specialized Research Fand for the Doctoral Program of Higher Education of China under Grant No.20070183133
文摘The study of finite nuclei containing antibaryon(s) in addition to nucleons is an interesting topic in nuclear physics. The calculation of the lifetime of an antibaryon embedded in a nucleus was performed in the framework of the standard quantum field theory. It was shown that the annihilation probability of the antibaryon in nuclei is strongly dependent on the effective masses of mesons involved in the annihilation channels. The contribution of the Dirac sea to the annihilation probability makes the lifetime of the antibaryon short. If the Dirac sea effect is neglected, the lifetime of the bound antibaryon tends to be longer with the nuclear density increasing. Particularly, when the nuclear density is larger than a critical value, the antibaryon may exist stably in a nucleus.