期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv7算法的风力涡轮机表面缺陷检测 被引量:3
1
作者 王志 高林 杨宇 《湖北民族大学学报(自然科学版)》 CAS 2024年第1期75-80,共6页
针对风力涡轮机表面缺陷类型多、尺度差异大与特征提取困难等问题,提出了改进YOLOv7(you only look once version 7)算法用于风力涡轮机表面缺陷检测。首先,采用渐进金字塔网络(asymptotic feature pyramid network,AFPN)替换YOLOv7网... 针对风力涡轮机表面缺陷类型多、尺度差异大与特征提取困难等问题,提出了改进YOLOv7(you only look once version 7)算法用于风力涡轮机表面缺陷检测。首先,采用渐进金字塔网络(asymptotic feature pyramid network,AFPN)替换YOLOv7网络中的路径聚合特征金字塔网络(path aggregation feature pyramid network,PAFPN),解决了多尺度融合过程中特征丢失和退化问题,并降低了模型复杂度;其次,采用扩充的高效聚合网络(efficient layer aggregation network-wide,ELAN-W)模块替换了AFPN中的基础模块,提高了模型的特征提取能力;最后,在颈部网络输入端以卷积和空间组增强(spatial group-wise enhance,SGE)注意力机制构建了卷积注意力模块,提升了模型对检测目标的定位能力和检测性能。实验结果表明,改进YOLOv7算法对风力涡轮机表面缺陷检测的平均精度均值、检测速度分别达到了85.4%、133.0帧/s,相较于原版YOLOv7算法分别提升了1.8%、17.7%。该研究成果能够有效地提升风力涡轮机表面缺陷检测性能。 展开更多
关键词 风力涡轮机 YOLOv7 AFPN 扩充的高效聚合网络 SGE 巡检 多尺度融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部