The adsorption of dibenzofuran (DBF) on three commercial granular activated carbons (GAC) was investigated to correlate the adsorption equilibrium and kinetics with the morphological characteristics of activated c...The adsorption of dibenzofuran (DBF) on three commercial granular activated carbons (GAC) was investigated to correlate the adsorption equilibrium and kinetics with the morphological characteristics of activated carbons. Breakthrough experiment was conducted to determine the isotherm and kinetics of dibenzofuran on the activated carbons. All-the experiment runs were performed in a fixed bed with a process temperature of 368 K. The effects of adsorbent morphological properties on the kinetics of the adsorption process were studied. The equilibrium data are found satisfactory fitted to the Langmuir isotherm. An intraparticle diffusion model based on the obtained Langmuir isotherm was'developed for predicting the fixed bed adsorption of dibenzofuran. The result indicated that this model fit all the breakthrough curves well. The surface diffusion coefficients of dibenzofuran on the activated carbon are calculated, and a relationship with the microporosity is found. As it was expected, the dibenzofuran molecule finds more kinetic restrictions for the diffusion in those carbons with narrower pore diameter.展开更多
The mechanical and diffusion properties of Ti-Ta-Fe alloys in the Ti-rich region were investigated by utilizing a high-throughput method, with the combination of nanoindentation and diffusion couple techniques.Five gr...The mechanical and diffusion properties of Ti-Ta-Fe alloys in the Ti-rich region were investigated by utilizing a high-throughput method, with the combination of nanoindentation and diffusion couple techniques.Five groups of ternary Ti-Ta-Fe diffusion couples were prepared after annealing at 1273 K for 25 h. The composition-dependent mechanical properties of bcc Ti-Ta-Fe system were experimentally determined by means of nanoindentation and electron probe microanalysis(EPMA) techniques. Moreover, the interdiffusion coefficients of Ti-Ta-Fe alloys at 1273 K were confirmed from the composition gradients of the ternary diffusion couples with the support of a pragmatic numerical inverse method. A composition-dependent database on the mechanical and diffusion properties of Ti-Ta-Fe alloys was carefully established and utilized for the discussion of the processability during the hot working. The results indicated that the content of Fe should be controlled for the Ti alloys with high hardness and low Young’s modulus.展开更多
The adsorption dynamics for phenol in aqueous solution of the adsorbent based on polystyrene was studied. In order to distinguish with the Boyd quasi-homogeneous model of the inner structure of ion-exchanger, the part...The adsorption dynamics for phenol in aqueous solution of the adsorbent based on polystyrene was studied. In order to distinguish with the Boyd quasi-homogeneous model of the inner structure of ion-exchanger, the particle diffusion model including surface diffusion model and pore diffusion model was suggested which is suitable to the macroporous adsorbent. The diffusiondetermination step of the adsorption process was established and the effective diffusion coefficient was also determined. The influence of surface diffusion and pore diffusion on the particle diffusion rate was investigated qualitatively. All of these were very important to improve the structure of the macroporous adsorbent in order to improve the mass-transfer rate.展开更多
The film diffusion mass-transfer process of adsorption of phenol on macroporous polystyrene resin was investigated in detail In order to revise the Boyd film diffusion kinetics equation, the out-surface structure of t...The film diffusion mass-transfer process of adsorption of phenol on macroporous polystyrene resin was investigated in detail In order to revise the Boyd film diffusion kinetics equation, the out-surface structure of the macroporous resin and that of gel-type ion-exchange resin was compared and the new film diffusion equation was also suggested. These results showed that the film diffusion was influenced by porosity of the macroporous resin greatly, which differed from the film diffusion behavior of ion-exchange resin obviously.展开更多
The mechanical and diffusion properties of bcc Ti−Nb−Zr−Sn alloys in the Ti-rich corner were analyzed through a high-throughput method with the combination of nanoindentation and diffusion couple techniques.Nine group...The mechanical and diffusion properties of bcc Ti−Nb−Zr−Sn alloys in the Ti-rich corner were analyzed through a high-throughput method with the combination of nanoindentation and diffusion couple techniques.Nine groups of quaternary Ti−Nb−Zr−Sn diffusion couples were prepared after annealing at 1273 K for 25 h.The composition-dependent mechanical properties were determined by nanoindentation and electron probe microanalysis(EPMA)techniques.Moreover,the corresponding interdiffusion coefficients were confirmed from the composition gradients of the quaternary diffusion couples using a pragmatic numerical inverse method.A composition-dependent database on the mechanical and diffusion properties was utilized to discuss the processability during the hot working.The results reveal that the solute elements Nb and Sn are strictly controlled to increase the hardness and wear resistance of Ti−Nb−Zr−Sn alloys,and the additional element Zr is mainly useful to improve the processability during the hot working.展开更多
A study on the transport characteristics of zinc in lou soil with phosphate at different concentrations was carried out by the method of step input. The effects of phosphate and temperature on zinc transport were stud...A study on the transport characteristics of zinc in lou soil with phosphate at different concentrations was carried out by the method of step input. The effects of phosphate and temperature on zinc transport were studied through analysing the diffusion-dispersion coefficients (D) and the retardation factor (R) obtained by the program CXTFIT. The results showed that D decreased and R increased with increasing concentration of phosphate so that it was difficult for zinc to break through the soil column, and zinc stopped to break through the column at high temperature. One order equation, double constant equation and the Elovich equation were all suitable for the description of zinc dynamica. Effects of phosphate and temperature on zinc transport were further confirmed by the analysis on pseudo-thermodynamic parameters of zinc transport.展开更多
We studied the dynamic fracture mechanical behavior of rock under different impact rates. The fracture experiment was a three-point bending beam subjected to different impact loads monitored using the reflected causti...We studied the dynamic fracture mechanical behavior of rock under different impact rates. The fracture experiment was a three-point bending beam subjected to different impact loads monitored using the reflected caustics method. The mechanical parameters for fracture of the three-poim bending beam specimen under impact load are analyzed. The mechanism of crack propagation is discussed. Experimental results show that the dynamic stress intensity factor increases before crack initiation. When the dynamic stress intensity factor reaches its maximum value the crack starts to develop. After crack initiation the dynamic stress intensity factor decreases rapidly and oscillates. As the impact rate increases the cracks initiate earlier, the maximum value of crack growth velocity becomes smaller and the values of dynamic stress intensity factor also vary less during crack propagation. The results provide a theoretical basis for the study of rock dynamic fracture.展开更多
Microscopic structure and diffusion properties of benzene in ambient water (298 K, 0.1 MPa) and super critical water (673-773 K, 25-35 MPa) are investigated by molecular dynamics simulation with site-site models. It...Microscopic structure and diffusion properties of benzene in ambient water (298 K, 0.1 MPa) and super critical water (673-773 K, 25-35 MPa) are investigated by molecular dynamics simulation with site-site models. It is found that at the ambient condition, the water molecules surrounding a benzene molecule form a hydrogen bond network. The hydrogen bond interaction between supercritical water molecules decreases dramatically under supercritical conditions. The diffusion coefficients of both the solute molecule and solvent molecule at supercritical conditions increase by 30-180 times than those at the ambient condition. With the temperature approaching the critical temperature, the change of diffusion coefficient with pressure becomes pronounced.展开更多
Self-diffusion coefficients of exponential-six fluids are studied using equilibrium molecular dynamics simulation technique. Mean-square displacements and velocity autocorrelation functions are used to calculate self-...Self-diffusion coefficients of exponential-six fluids are studied using equilibrium molecular dynamics simulation technique. Mean-square displacements and velocity autocorrelation functions are used to calculate self-diffusion coefficients through Einstein equation and Green-Kubo formula. It has been found that simulation results are in good agreement with experimental data for liquid argon which is taken as exponential-six fluid. The effects of density, temperature and steepness factor for repulsive part of exponential-six potential on self-diffusion coefficients are also investigated. The simulation results indicate that the self-diffusion coefficient of exponential-six fluid increases as temperature increases and density decreases. In addition, the larger self-diffusion coefficients are obtained as the steepness factor increases at the same temperature and density condition.展开更多
The use of diffusers around the horizontal-axis wind turbines has been widely studied since the diffuser improves the power coefficient of the turbine and it is often called DAWTs (diffuser augmented wind turbines)....The use of diffusers around the horizontal-axis wind turbines has been widely studied since the diffuser improves the power coefficient of the turbine and it is often called DAWTs (diffuser augmented wind turbines).Turbines using diffuser are called DWATs (Diffuser Augmented Turbines),and have efficiency bigger than the Betz limit (maximum energy flow extracted = 59.26%). Thus, this study presents a mathematical model describing the behavior of the velocity profile internally to a diffuser according to the characteristics of flow and geometry of a conical diffuser. The results are compared with experimental data and show good agreement.展开更多
Coulomb failure stress changes (ΔCFS) are used in the study of reservoir-induced seismicity (RIS) generation.The threshold value of ΔCFS that can trigger earthquakes is an important issue that deserves thorough rese...Coulomb failure stress changes (ΔCFS) are used in the study of reservoir-induced seismicity (RIS) generation.The threshold value of ΔCFS that can trigger earthquakes is an important issue that deserves thorough research.The M s 6.1 earthquake in the Xinfengjiang Reservoir in 1962 is well acknowledged as the largest reservoir-induced earthquake in China.Therefore, it is a logical site for quantitative calculation of ΔCFS induced by the filling of the reservoir and for investigating the magnitude of CFS that can trigger reservoir seismic activities.To better understand the RIS mechanism, a three-dimensional poroelastic finite element model of the Xinfengjiang Reservoir is proposed here, taking into consideration of the precise topography and dynamic water level.We calculate the instant changes of stress and pore pressure induced by water load, and the time variation of effective stresses due to pore water diffusion.The CFS on the seismogenesis faults and the accumulation of strain energy in the reservoir region are also calculated.Primary results suggest that the reservoir impoundment increases both pore pressure and CFS on the fault at the focal depth.The diffusion of pore pressure was likely the main factor that triggered the main earthquake, whereas the elastic stress owing to water load was relatively small.The magnitude of CFS on seismogenesis fault can reach approximately 10 kPa, and the ΔCFS values at the hypocenter can be about 0.7-3.0 kPa, depending on the fault diffusion coefficient.The calculated maximum vertical subsidence caused by the water load in the Xinfengjiang Reservoir is 17.5 mm, which is in good agreement with the observed value of 15 mm.The accumulated strain energy owing to water load was only about 7.3×10 11 J, even less than 1% of the seismic wave energy released by the earthquake.The reservoir impoundment was the only factor that triggered the earthquake.展开更多
Room temperature ionic liquids(RTILs) with dispersed carbon pieces exhibit distinctive physiochemical properties. To explore the molecular mechanism, RTILs/carbon pieces mixture was investigated by molecular dynamics(...Room temperature ionic liquids(RTILs) with dispersed carbon pieces exhibit distinctive physiochemical properties. To explore the molecular mechanism, RTILs/carbon pieces mixture was investigated by molecular dynamics(MD) simulation in this work. Rigid and flexible carbon pieces in the form of graphene with different thicknesses and carbon nanotubes in different sizes were dispersed in a representative RTIL 1-butyl-3-methyl-imidazolium dicyanamide([Bmim][DCA]). This study demonstrated that the diffusion coefficients of RTILs in the presence of flexible carbons are similar to those of bulk RTILs at varying temperatures, which is in contrast to the decreased diffusion of RTILs in the presence of rigid carbons. In addition, interfacial ion number density at rigid carbon surfaces was higher than that at flexible ones, which is correlated with the accessible external surface area of carbon pieces. The life time of cation-anion pair in the presence of carbon pieces also exhibited a dependence on carbon flexibility. RTILs with dispersed rigid carbon pieces showed longer ion pair life time than those with flexible ones, in consistence with the observation in diffusion coefficients. This work highlights the necessity of including the carbon flexibility when performing MD simulation of RTILs in the presence of dispersed carbon pieces in order to obtain the reliable dynamical and interfacial structural properties.展开更多
By means of a nonstandard estimation about the energy functional, the authors prove the existence of a global attractor for an abstract nonlinear evolution equation. As an application, the existence of a global attrac...By means of a nonstandard estimation about the energy functional, the authors prove the existence of a global attractor for an abstract nonlinear evolution equation. As an application, the existence of a global attractor for some nonlinear reaction-diffusion equations with some distribution derivatives in inhomogeneous terms is obtained.展开更多
A numerical investigation on the aerodynamic effects of impeller-diffuser axial misalignment in the low-flow-coefficient centrifugal compressor is conducted through three-dimensional CFD analysis.The results show that...A numerical investigation on the aerodynamic effects of impeller-diffuser axial misalignment in the low-flow-coefficient centrifugal compressor is conducted through three-dimensional CFD analysis.The results show that the flow,especially near the diffuser inlet,is influenced by the axial misalignment obviously.When the impeller offsets to one side,the pressure at diffuser inlet close to this side will descend,and the vortex in the cavity on the other side will partially enter the diffuser and then result in the back flow.The performances of the stage and its components also change with the impeller-diffuser axial misalignment.There exists an optimum offset making the efficiency maximum at a given operating point.Furthermore,the effect of impeller-diffuser axial misalignment on the axial thrust is pronounced.The axial thrust is nearly increased linearly with the increase of axial misalignment.The aerodynamic effects of impeller-diffuser axial misalignment in the low-flow-coefficient centrifugal compressor behaves more remarkably at the large flow rate.To alleviate the aerodynamic effects of impeller-diffuser misalignment,a rounding in the meridional plane at the diffuser inlet can be applied.展开更多
In this paper,we investigate the thermal convection flow which is driven by a heat-releasing concentration field.Different from our previous work on the internally heated double diffusive convection(IHDDC),in the curr...In this paper,we investigate the thermal convection flow which is driven by a heat-releasing concentration field.Different from our previous work on the internally heated double diffusive convection(IHDDC),in the current internally heated Rayleigh-Bénard convection(IHRBC),the fluid density depends solely on the temperature field and the concentration field only serves as the internal heat source.Linear stability analyses reveal that the most unstable mode is always the stationary one.The critical Rayleigh number,which measures the strength of the unstable driving force,decreases with the Schmidt number(the ratio between the viscosity and the molecular diffusivity of concentration field),but increases with the Prandtl number(the ratio between the viscosity and the thermal molecular diffusivity).Fully developed flows are then studied by three-dimensional direct numerical simulations.The unifying model developed for IHDDC can also be used to describe the transport properties for the current flow.The characteristic widths are smaller for the plumes descending from the top plate than those ascending from the bottom one.展开更多
基金Supported by the National Natural Science Foundation of China (29936100) and the Natural Science Foundation of Guangdong Province (7010327). The authors would like to thank to Pro. GU0 Haifu in Chemistry and Chemical Engineering department of Zhaoqing University for providing the necessary facilities to conduct part of the experimental work reported in this study.
文摘The adsorption of dibenzofuran (DBF) on three commercial granular activated carbons (GAC) was investigated to correlate the adsorption equilibrium and kinetics with the morphological characteristics of activated carbons. Breakthrough experiment was conducted to determine the isotherm and kinetics of dibenzofuran on the activated carbons. All-the experiment runs were performed in a fixed bed with a process temperature of 368 K. The effects of adsorbent morphological properties on the kinetics of the adsorption process were studied. The equilibrium data are found satisfactory fitted to the Langmuir isotherm. An intraparticle diffusion model based on the obtained Langmuir isotherm was'developed for predicting the fixed bed adsorption of dibenzofuran. The result indicated that this model fit all the breakthrough curves well. The surface diffusion coefficients of dibenzofuran on the activated carbon are calculated, and a relationship with the microporosity is found. As it was expected, the dibenzofuran molecule finds more kinetic restrictions for the diffusion in those carbons with narrower pore diameter.
基金financially supported by the National Natural Science Foundation for Youth of China (No. 51701083)the Guangzhou Science and Technology Association Young Talent Lifting Project, China (No. X20210201054)+1 种基金the Open Fund of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, China (No. HKDNM201903)the Guangdong Basic and Applied Basic Research Foundation, China (No. 2019A1515110095)。
文摘The mechanical and diffusion properties of Ti-Ta-Fe alloys in the Ti-rich region were investigated by utilizing a high-throughput method, with the combination of nanoindentation and diffusion couple techniques.Five groups of ternary Ti-Ta-Fe diffusion couples were prepared after annealing at 1273 K for 25 h. The composition-dependent mechanical properties of bcc Ti-Ta-Fe system were experimentally determined by means of nanoindentation and electron probe microanalysis(EPMA) techniques. Moreover, the interdiffusion coefficients of Ti-Ta-Fe alloys at 1273 K were confirmed from the composition gradients of the ternary diffusion couples with the support of a pragmatic numerical inverse method. A composition-dependent database on the mechanical and diffusion properties of Ti-Ta-Fe alloys was carefully established and utilized for the discussion of the processability during the hot working. The results indicated that the content of Fe should be controlled for the Ti alloys with high hardness and low Young’s modulus.
文摘The adsorption dynamics for phenol in aqueous solution of the adsorbent based on polystyrene was studied. In order to distinguish with the Boyd quasi-homogeneous model of the inner structure of ion-exchanger, the particle diffusion model including surface diffusion model and pore diffusion model was suggested which is suitable to the macroporous adsorbent. The diffusiondetermination step of the adsorption process was established and the effective diffusion coefficient was also determined. The influence of surface diffusion and pore diffusion on the particle diffusion rate was investigated qualitatively. All of these were very important to improve the structure of the macroporous adsorbent in order to improve the mass-transfer rate.
文摘The film diffusion mass-transfer process of adsorption of phenol on macroporous polystyrene resin was investigated in detail In order to revise the Boyd film diffusion kinetics equation, the out-surface structure of the macroporous resin and that of gel-type ion-exchange resin was compared and the new film diffusion equation was also suggested. These results showed that the film diffusion was influenced by porosity of the macroporous resin greatly, which differed from the film diffusion behavior of ion-exchange resin obviously.
基金supported by the National Natural Science Foundation for Youth of China (No. 51701083)the Guangzhou Science and Technology Association Young Talent Lifting Project, China (No. X20210201054)+2 种基金the Guangdong Provincial Natural Science Foundation for Doctoral Research Project, China (No. 2017A030310519)the Open Fund of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, China (No. HKDNM201903)financial support from the Guangdong Basic and Applied Basic Research Foundation, China (No. 2019A1515110095)。
文摘The mechanical and diffusion properties of bcc Ti−Nb−Zr−Sn alloys in the Ti-rich corner were analyzed through a high-throughput method with the combination of nanoindentation and diffusion couple techniques.Nine groups of quaternary Ti−Nb−Zr−Sn diffusion couples were prepared after annealing at 1273 K for 25 h.The composition-dependent mechanical properties were determined by nanoindentation and electron probe microanalysis(EPMA)techniques.Moreover,the corresponding interdiffusion coefficients were confirmed from the composition gradients of the quaternary diffusion couples using a pragmatic numerical inverse method.A composition-dependent database on the mechanical and diffusion properties was utilized to discuss the processability during the hot working.The results reveal that the solute elements Nb and Sn are strictly controlled to increase the hardness and wear resistance of Ti−Nb−Zr−Sn alloys,and the additional element Zr is mainly useful to improve the processability during the hot working.
文摘A study on the transport characteristics of zinc in lou soil with phosphate at different concentrations was carried out by the method of step input. The effects of phosphate and temperature on zinc transport were studied through analysing the diffusion-dispersion coefficients (D) and the retardation factor (R) obtained by the program CXTFIT. The results showed that D decreased and R increased with increasing concentration of phosphate so that it was difficult for zinc to break through the soil column, and zinc stopped to break through the column at high temperature. One order equation, double constant equation and the Elovich equation were all suitable for the description of zinc dynamica. Effects of phosphate and temperature on zinc transport were further confirmed by the analysis on pseudo-thermodynamic parameters of zinc transport.
基金the support of the National Natural Science Foundation of China (Grant No.50774086 and 50874109)
文摘We studied the dynamic fracture mechanical behavior of rock under different impact rates. The fracture experiment was a three-point bending beam subjected to different impact loads monitored using the reflected caustics method. The mechanical parameters for fracture of the three-poim bending beam specimen under impact load are analyzed. The mechanism of crack propagation is discussed. Experimental results show that the dynamic stress intensity factor increases before crack initiation. When the dynamic stress intensity factor reaches its maximum value the crack starts to develop. After crack initiation the dynamic stress intensity factor decreases rapidly and oscillates. As the impact rate increases the cracks initiate earlier, the maximum value of crack growth velocity becomes smaller and the values of dynamic stress intensity factor also vary less during crack propagation. The results provide a theoretical basis for the study of rock dynamic fracture.
基金Supported by the State Key Fundamental Research Plan (NO. G2000048) and the National High Performance Computing Foundation of China (No. 99118).
文摘Microscopic structure and diffusion properties of benzene in ambient water (298 K, 0.1 MPa) and super critical water (673-773 K, 25-35 MPa) are investigated by molecular dynamics simulation with site-site models. It is found that at the ambient condition, the water molecules surrounding a benzene molecule form a hydrogen bond network. The hydrogen bond interaction between supercritical water molecules decreases dramatically under supercritical conditions. The diffusion coefficients of both the solute molecule and solvent molecule at supercritical conditions increase by 30-180 times than those at the ambient condition. With the temperature approaching the critical temperature, the change of diffusion coefficient with pressure becomes pronounced.
基金Supported by the National Natural Science Foundation of China(No.29736170).
文摘Self-diffusion coefficients of exponential-six fluids are studied using equilibrium molecular dynamics simulation technique. Mean-square displacements and velocity autocorrelation functions are used to calculate self-diffusion coefficients through Einstein equation and Green-Kubo formula. It has been found that simulation results are in good agreement with experimental data for liquid argon which is taken as exponential-six fluid. The effects of density, temperature and steepness factor for repulsive part of exponential-six potential on self-diffusion coefficients are also investigated. The simulation results indicate that the self-diffusion coefficient of exponential-six fluid increases as temperature increases and density decreases. In addition, the larger self-diffusion coefficients are obtained as the steepness factor increases at the same temperature and density condition.
文摘The use of diffusers around the horizontal-axis wind turbines has been widely studied since the diffuser improves the power coefficient of the turbine and it is often called DAWTs (diffuser augmented wind turbines).Turbines using diffuser are called DWATs (Diffuser Augmented Turbines),and have efficiency bigger than the Betz limit (maximum energy flow extracted = 59.26%). Thus, this study presents a mathematical model describing the behavior of the velocity profile internally to a diffuser according to the characteristics of flow and geometry of a conical diffuser. The results are compared with experimental data and show good agreement.
基金supported by Key Laboratory of Earthquake DynamicsSinoProbe-07 Project of the Ministry of Land and Resources+1 种基金National Basic Research Program of China(Grant No.2008CB425701)National High-tech R&D Program of China(Grant No.2010AA012402)
文摘Coulomb failure stress changes (ΔCFS) are used in the study of reservoir-induced seismicity (RIS) generation.The threshold value of ΔCFS that can trigger earthquakes is an important issue that deserves thorough research.The M s 6.1 earthquake in the Xinfengjiang Reservoir in 1962 is well acknowledged as the largest reservoir-induced earthquake in China.Therefore, it is a logical site for quantitative calculation of ΔCFS induced by the filling of the reservoir and for investigating the magnitude of CFS that can trigger reservoir seismic activities.To better understand the RIS mechanism, a three-dimensional poroelastic finite element model of the Xinfengjiang Reservoir is proposed here, taking into consideration of the precise topography and dynamic water level.We calculate the instant changes of stress and pore pressure induced by water load, and the time variation of effective stresses due to pore water diffusion.The CFS on the seismogenesis faults and the accumulation of strain energy in the reservoir region are also calculated.Primary results suggest that the reservoir impoundment increases both pore pressure and CFS on the fault at the focal depth.The diffusion of pore pressure was likely the main factor that triggered the main earthquake, whereas the elastic stress owing to water load was relatively small.The magnitude of CFS on seismogenesis fault can reach approximately 10 kPa, and the ΔCFS values at the hypocenter can be about 0.7-3.0 kPa, depending on the fault diffusion coefficient.The calculated maximum vertical subsidence caused by the water load in the Xinfengjiang Reservoir is 17.5 mm, which is in good agreement with the observed value of 15 mm.The accumulated strain energy owing to water load was only about 7.3×10 11 J, even less than 1% of the seismic wave energy released by the earthquake.The reservoir impoundment was the only factor that triggered the earthquake.
基金supported by the National Natural Science Foundation of China (51406060)the Natural Science Foundation of Hubei Province of China (2014CFA089)+2 种基金the Fundamental Research Funds for the Central Universities (2015ZZGH008)the support from the Fluid Interface Reactions, Structures and Transport (FIRST), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciencesthe National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract DEAC02-05CH11231
文摘Room temperature ionic liquids(RTILs) with dispersed carbon pieces exhibit distinctive physiochemical properties. To explore the molecular mechanism, RTILs/carbon pieces mixture was investigated by molecular dynamics(MD) simulation in this work. Rigid and flexible carbon pieces in the form of graphene with different thicknesses and carbon nanotubes in different sizes were dispersed in a representative RTIL 1-butyl-3-methyl-imidazolium dicyanamide([Bmim][DCA]). This study demonstrated that the diffusion coefficients of RTILs in the presence of flexible carbons are similar to those of bulk RTILs at varying temperatures, which is in contrast to the decreased diffusion of RTILs in the presence of rigid carbons. In addition, interfacial ion number density at rigid carbon surfaces was higher than that at flexible ones, which is correlated with the accessible external surface area of carbon pieces. The life time of cation-anion pair in the presence of carbon pieces also exhibited a dependence on carbon flexibility. RTILs with dispersed rigid carbon pieces showed longer ion pair life time than those with flexible ones, in consistence with the observation in diffusion coefficients. This work highlights the necessity of including the carbon flexibility when performing MD simulation of RTILs in the presence of dispersed carbon pieces in order to obtain the reliable dynamical and interfacial structural properties.
基金Project supported by the National Natural Science Foundation of China (No. 19971036)the Trans-Century Training Programme Foundation for the Talents by the Ministry of Education of China.
文摘By means of a nonstandard estimation about the energy functional, the authors prove the existence of a global attractor for an abstract nonlinear evolution equation. As an application, the existence of a global attractor for some nonlinear reaction-diffusion equations with some distribution derivatives in inhomogeneous terms is obtained.
基金supported by the National Natural Science Foundation of China(Grant No.51236006)China Postdoctoral Science Foundation(Grant No.2012M521771)
文摘A numerical investigation on the aerodynamic effects of impeller-diffuser axial misalignment in the low-flow-coefficient centrifugal compressor is conducted through three-dimensional CFD analysis.The results show that the flow,especially near the diffuser inlet,is influenced by the axial misalignment obviously.When the impeller offsets to one side,the pressure at diffuser inlet close to this side will descend,and the vortex in the cavity on the other side will partially enter the diffuser and then result in the back flow.The performances of the stage and its components also change with the impeller-diffuser axial misalignment.There exists an optimum offset making the efficiency maximum at a given operating point.Furthermore,the effect of impeller-diffuser axial misalignment on the axial thrust is pronounced.The axial thrust is nearly increased linearly with the increase of axial misalignment.The aerodynamic effects of impeller-diffuser axial misalignment in the low-flow-coefficient centrifugal compressor behaves more remarkably at the large flow rate.To alleviate the aerodynamic effects of impeller-diffuser misalignment,a rounding in the meridional plane at the diffuser inlet can be applied.
基金the Major Research Plan of National Natural Science Foundation of China(Grant Nos.91852107 and 91752202)Mengqi Zhang acknowledges the financial support from the Ministry of Education,Singapore(MOE WBS No.R-265-000-689-114).
文摘In this paper,we investigate the thermal convection flow which is driven by a heat-releasing concentration field.Different from our previous work on the internally heated double diffusive convection(IHDDC),in the current internally heated Rayleigh-Bénard convection(IHRBC),the fluid density depends solely on the temperature field and the concentration field only serves as the internal heat source.Linear stability analyses reveal that the most unstable mode is always the stationary one.The critical Rayleigh number,which measures the strength of the unstable driving force,decreases with the Schmidt number(the ratio between the viscosity and the molecular diffusivity of concentration field),but increases with the Prandtl number(the ratio between the viscosity and the thermal molecular diffusivity).Fully developed flows are then studied by three-dimensional direct numerical simulations.The unifying model developed for IHDDC can also be used to describe the transport properties for the current flow.The characteristic widths are smaller for the plumes descending from the top plate than those ascending from the bottom one.