The influence of enlarged section parameters on pressure transients of high-speed train passing through a tunnel was investigated by numerical simulation.The calculation results obtained by the structured and unstruct...The influence of enlarged section parameters on pressure transients of high-speed train passing through a tunnel was investigated by numerical simulation.The calculation results obtained by the structured and unstructured grid and the experimental results of smooth wall tunnel were verified.Numerical simulation studies were conducted on three tunnel enlarged section parameters,the enlarged section distribution along circumferential direction,the enlarged section area and the enlarged section distribution along tunnel length direction.The calculation results show that the influence of the different enlarged section distributions along tunnel circumferential direction on pressure transients in the tunnel is basically consistent.There is an optimal enlarged section area for the minimum value of the pressure variation amplitude and the average pressure variation in the tunnel.The law of the pressure variation amplitude and the average pressure variation of the enlarged section distribution along tunnel length direction are obtained.展开更多
This paper discusses the influence of various volute designs on volute overall performance for a certain centrifu- gal compressor with both vaned and vaneless diffuser. Firstly, based on a free vortex flow pattern and...This paper discusses the influence of various volute designs on volute overall performance for a certain centrifu- gal compressor with both vaned and vaneless diffuser. Firstly, based on a free vortex flow pattern and the assumption of a circumferentially uniform flow at the design condition, a corrected method for volute design is adopted. By means of this method, corresponding to five geometric parameters affecting the volute overall performance, ten volute cases are designed. Secondly, the numerical simulation is employed and the detailed flow field and losses in different volutes with different geometric parameters are analyzed. The numerical investigation reveals that in all of the five geometric parameters, the radial location of the cross-section has the strongest influence on the performance of the volute. The non-uniform volute inlet formed by the upward vaned diffuser outlet flow is another important factor. Finally a relatively better value of D1/D2 is concluded.展开更多
基金Project (2016YFB1200602-11) supported by National Key R&D Plan of China
文摘The influence of enlarged section parameters on pressure transients of high-speed train passing through a tunnel was investigated by numerical simulation.The calculation results obtained by the structured and unstructured grid and the experimental results of smooth wall tunnel were verified.Numerical simulation studies were conducted on three tunnel enlarged section parameters,the enlarged section distribution along circumferential direction,the enlarged section area and the enlarged section distribution along tunnel length direction.The calculation results show that the influence of the different enlarged section distributions along tunnel circumferential direction on pressure transients in the tunnel is basically consistent.There is an optimal enlarged section area for the minimum value of the pressure variation amplitude and the average pressure variation in the tunnel.The law of the pressure variation amplitude and the average pressure variation of the enlarged section distribution along tunnel length direction are obtained.
文摘This paper discusses the influence of various volute designs on volute overall performance for a certain centrifu- gal compressor with both vaned and vaneless diffuser. Firstly, based on a free vortex flow pattern and the assumption of a circumferentially uniform flow at the design condition, a corrected method for volute design is adopted. By means of this method, corresponding to five geometric parameters affecting the volute overall performance, ten volute cases are designed. Secondly, the numerical simulation is employed and the detailed flow field and losses in different volutes with different geometric parameters are analyzed. The numerical investigation reveals that in all of the five geometric parameters, the radial location of the cross-section has the strongest influence on the performance of the volute. The non-uniform volute inlet formed by the upward vaned diffuser outlet flow is another important factor. Finally a relatively better value of D1/D2 is concluded.