New exact solutions expressed by the Jacobi elliptic functions are obtained to the (2+1)-dimensional dispersive long-wave equations by using the modified F-expansion method. In the limit case, new solitary wave sol...New exact solutions expressed by the Jacobi elliptic functions are obtained to the (2+1)-dimensional dispersive long-wave equations by using the modified F-expansion method. In the limit case, new solitary wave solutions and triangular periodic wave solutions are obtained as well.展开更多
New exact solutions expressed by the Jacobi elliptic functions are obtained to the long-short wave interaction equations by using the modified F-expansion method. In the limit case, solitary wave solutions and triangu...New exact solutions expressed by the Jacobi elliptic functions are obtained to the long-short wave interaction equations by using the modified F-expansion method. In the limit case, solitary wave solutions and triangular periodic wave solutions are obtained as well.展开更多
In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evo...In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evolution equations. To illustrate the effectiveness of our method, we take the (2+ 1)-dimensional stochastic dispersive long wave system as an example. We not only have obtained some known solutions, but also have constructed some new rational formal stochastic Jacobi elliptic function solutions.展开更多
In this paper, a further extended Jacobi elliptic function rationM expansion method is proposed for constructing new forms of exact solutions to nonlinear partial differential equations by making a more general transf...In this paper, a further extended Jacobi elliptic function rationM expansion method is proposed for constructing new forms of exact solutions to nonlinear partial differential equations by making a more general transformation. For illustration, we apply the method to (2+1)-dimensionM dispersive long wave equation and successfully obtain many new doubly periodic solutions. When the modulus m→1, these sohitions degenerate as soliton solutions. The method can be also applied to other nonlinear partial differential equations.展开更多
In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of ...In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of making a more general transformation. For illustration, we apply the method to the (2+1)-dimensional dispersive long wave equation and successfully obtain many new doubly periodic solutions, which degenerate as soliton solutions when the modulus m approximates 1. The method can also be applied to other nonlinear partial differential equations.展开更多
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant No. 2004 zx16
文摘New exact solutions expressed by the Jacobi elliptic functions are obtained to the (2+1)-dimensional dispersive long-wave equations by using the modified F-expansion method. In the limit case, new solitary wave solutions and triangular periodic wave solutions are obtained as well.
文摘New exact solutions expressed by the Jacobi elliptic functions are obtained to the long-short wave interaction equations by using the modified F-expansion method. In the limit case, solitary wave solutions and triangular periodic wave solutions are obtained as well.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000
文摘In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evolution equations. To illustrate the effectiveness of our method, we take the (2+ 1)-dimensional stochastic dispersive long wave system as an example. We not only have obtained some known solutions, but also have constructed some new rational formal stochastic Jacobi elliptic function solutions.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004 CB 318000
文摘In this paper, a further extended Jacobi elliptic function rationM expansion method is proposed for constructing new forms of exact solutions to nonlinear partial differential equations by making a more general transformation. For illustration, we apply the method to (2+1)-dimensionM dispersive long wave equation and successfully obtain many new doubly periodic solutions. When the modulus m→1, these sohitions degenerate as soliton solutions. The method can be also applied to other nonlinear partial differential equations.
文摘In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of making a more general transformation. For illustration, we apply the method to the (2+1)-dimensional dispersive long wave equation and successfully obtain many new doubly periodic solutions, which degenerate as soliton solutions when the modulus m approximates 1. The method can also be applied to other nonlinear partial differential equations.