期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于扩展卡尔曼估计算法的地震模拟振动台模型识别 被引量:7
1
作者 赵博宇 丁勇 吴斌 《振动与冲击》 EI CSCD 北大核心 2014年第12期145-150,共6页
由于地震模拟振动台的长期使用和多次维护,其实际工作中的模型往往难以建立,而地震模拟振动台模型的修正对于估计实验结构底部剪力有重要作用。为此利用扩展卡尔曼估计算法识别了哈尔滨工业大学地震模拟振动台模型。首先,对一单自由度... 由于地震模拟振动台的长期使用和多次维护,其实际工作中的模型往往难以建立,而地震模拟振动台模型的修正对于估计实验结构底部剪力有重要作用。为此利用扩展卡尔曼估计算法识别了哈尔滨工业大学地震模拟振动台模型。首先,对一单自由度结构进行仿真,通过测量位移响应,将结构参数准确的识别。随后,对抗震实验室振动台进行了3次空台加载,通过测量振动台台面位移,利用扩展的卡尔曼估计算法,识别地震模拟振动台的模型,更新了其质量,阻尼和刚度。而后分别进行两组不同载荷形成的空台加载实验,由识别参数重构计算得到的台面响应与实测台面响应吻合良好,由此表明振动台模型参数估计准确。通过此次研究既可以有效的认识不同构建形式的振动台模型,同样也可用于确定某些难以测得参数的复杂结构的模型。 展开更多
关键词 模型更新 结构参数识别 地震模拟振动台 扩展卡尔曼滤波估计
下载PDF
自适应两步滤波算法在机载IRSTS被动定位中的应用
2
作者 冯国强 孙军红 +1 位作者 邹强 李伟仁 《火力与指挥控制》 CSCD 北大核心 2007年第6期74-76,共3页
在机载红外搜索跟踪系统被动定位研究中,针对扩展卡尔曼滤波算法要求先验的噪声统计及存在系统观测模型线性化误差影响滤波精度的特点,利用两步滤波算法并结合Sage-Husa噪声估计器构建了适用于机载IRSTS被动定位特点的自适应两步滤波算... 在机载红外搜索跟踪系统被动定位研究中,针对扩展卡尔曼滤波算法要求先验的噪声统计及存在系统观测模型线性化误差影响滤波精度的特点,利用两步滤波算法并结合Sage-Husa噪声估计器构建了适用于机载IRSTS被动定位特点的自适应两步滤波算法模型,算法不仅实时在线地估计了观测噪声的统计特性,而且避免了观测模型线性化误差。仿真结果表明,在完全相同的初始条件下,自适应两步滤波算法对目标运动参数的估计结果明显优于扩展卡尔曼滤波,从而提高了机载IRSTS被动定位的精度。 展开更多
关键词 红外搜索跟踪系统 被动定位 扩展卡尔曼滤波 自适应两步滤波算法 噪声估计
下载PDF
基于变参数模型的锂电池荷电状态观测方法(英文) 被引量:2
3
作者 许元武 吴肖龙 +4 位作者 陈明渊 蒋建华 邓忠华 付晓薇 李曦 《控制理论与应用》 EI CAS CSCD 北大核心 2019年第3期443-452,共10页
锂电池荷电状态(SOC)观测技术作为电池管理系统(BMS)的关键技术,在维持电池系统设备安全高效运作、延长电池组整体生命周期等方面均起着不可或缺的作用.本文以改善锂电池荷电状态的观测结果为目的,对锂离子电池荷电状态的观测方法进行... 锂电池荷电状态(SOC)观测技术作为电池管理系统(BMS)的关键技术,在维持电池系统设备安全高效运作、延长电池组整体生命周期等方面均起着不可或缺的作用.本文以改善锂电池荷电状态的观测结果为目的,对锂离子电池荷电状态的观测方法进行了研究,基于二阶变参数锂电池模型,设计了一种有效的改善SOC观测精度的方法.首先,根据SOC的定义,建立了安时积分估计(AH),通过引入二阶变参数锂电池模型建立扩展卡尔曼滤波估计器(EKF),然后结合Takagi-Sugeno模糊模型原理,设计Takagi-Sugeno和EKF联合估计器(TS–EKF).最后,在Simulink仿真平台上验证了SOC观测方法的准确性和实用性.结果表明,本文所设计的Takagi-Sugeno和EKF联合估计器可以改善SOC观测精度. 展开更多
关键词 荷电状态估计 二阶变参数锂电池模型 扩展卡尔曼滤波估计 Takagi-Sugeno模糊 Takagi-Sugeno和EKF联合估计
下载PDF
E^2KF Based Joint Multiple CFOs and Channel Estimate for MIMO-OFDM Systems over High Mobility Scenarios 被引量:1
4
作者 QIAO Jing CHEN Qingchun SHEN Feifei 《China Communications》 SCIE CSCD 2014年第A01期56-63,共8页
An enhanced extended Kalman filtering (E2KF) algorithm is proposed in this paper to cope with the joint multiple carrier frequency offsets (CFOs) and time-variant channel estimate for MIMO-OFDM systems over high m... An enhanced extended Kalman filtering (E2KF) algorithm is proposed in this paper to cope with the joint multiple carrier frequency offsets (CFOs) and time-variant channel estimate for MIMO-OFDM systems over high mobility scenarios. It is unveiled that, the auto-regressive (AR) model not only provides an effective method to capture the dynamics of the channel parameters, which enables the prediction capability in the EKF algorithm, but also suggests an method to incorporate multiple successive pilot symbols for the improved measurement update. 展开更多
关键词 CFO channel estimate MIMO-OFDM
下载PDF
Comparison of Linearized Kalman Filter and Extended Kalman Filter for Satellite Motion States Estimation 被引量:1
5
作者 杨亚非 《Journal of Measurement Science and Instrumentation》 CAS 2011年第4期307-311,共5页
The performance of the conventional Kalman filter depends on process and measurement noise statistics given by the system model and measurements.The conventional Kalman filter is usually used for a linear system,but i... The performance of the conventional Kalman filter depends on process and measurement noise statistics given by the system model and measurements.The conventional Kalman filter is usually used for a linear system,but it should not be used for estimating the state of a nonlinear system such as a satellite motion because it is difficult to obtain the desired estimation results.The linearized Kalman filtering approach and the extended Kalman filtering approach have been proposed for a general nonlinear system.The equations of satellite motion are described.The satellite motion states are estimated,and the relevant estimation errors are calculated through the estimation algorithms of the both above mentioned approaches implemented in Matlab are estimated.The performances of the extended Kalman filter and the linearized Kalman filter are compared.The simulation results show that the extended Kalman filter is much better than the linearized Kalman filter at the aspect of estimation effect. 展开更多
关键词 nonlinear filtering approach nonlinear system satellite orbit state space state estimation
下载PDF
Dynamic Load Identification for Structures with Variable Stiffness Based on Extended Kalman Filter
6
作者 LI Yilin JIANG Jinhui TANG Hongzhi 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第S01期16-22,共7页
We introduce the extended Kalman filter(EKF)method combined with the least square estimation to identify the unknown load acting on the time-varying structure and realize the tracking of the structural parameters of t... We introduce the extended Kalman filter(EKF)method combined with the least square estimation to identify the unknown load acting on the time-varying structure and realize the tracking of the structural parameters of the time-varying system.Firstly,we propose the dynamic load identification method when the unknown parameters are stiffness coefficients.Then,a five-degree-of-freedom slowly-varying-stiffness structure is introduced to verify the effectiveness and the accuracy of the EKF method.The results show that the EKF method can accurately identify unknown loads and structural parameters simultaneously even considering noises in the input data. 展开更多
关键词 extended Kalman filter least square estimation load identification parameter identification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部