鉴于卡尔曼滤波法中电池荷电状态(state of charge,SOC)的初始值一般根据开路电压法确定,传统开路电压法是通过测量电池开路电压,由电池开路电压与电池荷电状态之间的关系曲线得到电池SOC,耗时较长.本文在此基础上提出一种新的办法,通...鉴于卡尔曼滤波法中电池荷电状态(state of charge,SOC)的初始值一般根据开路电压法确定,传统开路电压法是通过测量电池开路电压,由电池开路电压与电池荷电状态之间的关系曲线得到电池SOC,耗时较长.本文在此基础上提出一种新的办法,通过对电池放电曲线及恢复曲线分析,结合电池等效模型,拟合出开路电压的计算公式.用放电停止后的某时刻电压估计电池的开路电压.不但解决了SOC估算中开路电压法用时长的问题,而且提高了开路电压值的准确性,进而提高了SOC估算精度.再以戴维宁模型为基础,通过电池测试平台辨识电池模型参数,并验证其可靠性,采用扩展卡尔曼滤波算法实现了对电池荷电状态的估算,状态参数SOC估算初始值由改进后的开路电压法估算出的SOC值确定.结果表明该方法解决了初始值的偏差导致的估算初期误差较大问题,提高了整体的估算精度.展开更多
文摘鉴于卡尔曼滤波法中电池荷电状态(state of charge,SOC)的初始值一般根据开路电压法确定,传统开路电压法是通过测量电池开路电压,由电池开路电压与电池荷电状态之间的关系曲线得到电池SOC,耗时较长.本文在此基础上提出一种新的办法,通过对电池放电曲线及恢复曲线分析,结合电池等效模型,拟合出开路电压的计算公式.用放电停止后的某时刻电压估计电池的开路电压.不但解决了SOC估算中开路电压法用时长的问题,而且提高了开路电压值的准确性,进而提高了SOC估算精度.再以戴维宁模型为基础,通过电池测试平台辨识电池模型参数,并验证其可靠性,采用扩展卡尔曼滤波算法实现了对电池荷电状态的估算,状态参数SOC估算初始值由改进后的开路电压法估算出的SOC值确定.结果表明该方法解决了初始值的偏差导致的估算初期误差较大问题,提高了整体的估算精度.