Solutions of inverse problems are required in various fields of science and engineering. The concept of network inversion has been studied as a neural-network-based solution to inverse problems. In general, inverse pr...Solutions of inverse problems are required in various fields of science and engineering. The concept of network inversion has been studied as a neural-network-based solution to inverse problems. In general, inverse problems are not limited to a real-valued area. Recently, complex-valued neural networks have been actively studied in the field of neural networks. As an extension of network inversion to complex numbers, a complex-valued network inversion has been proposed. Moreover, inverse problems for estimating the parameters of distributed generation systems such as distributed energy plants or smart grids from observed electric circuit data have been studied in the field of natural energy. These emphasize the need to handle complex numbers in an alternating current (AC) circuit. In this paper, the authors propose an application of the complex-valued network inversion to the inverse estimation of a distributed generation. Further, the authors confirm the effectiveness of the complex-valued network inversion on the basis of simulation results.展开更多
文摘Solutions of inverse problems are required in various fields of science and engineering. The concept of network inversion has been studied as a neural-network-based solution to inverse problems. In general, inverse problems are not limited to a real-valued area. Recently, complex-valued neural networks have been actively studied in the field of neural networks. As an extension of network inversion to complex numbers, a complex-valued network inversion has been proposed. Moreover, inverse problems for estimating the parameters of distributed generation systems such as distributed energy plants or smart grids from observed electric circuit data have been studied in the field of natural energy. These emphasize the need to handle complex numbers in an alternating current (AC) circuit. In this paper, the authors propose an application of the complex-valued network inversion to the inverse estimation of a distributed generation. Further, the authors confirm the effectiveness of the complex-valued network inversion on the basis of simulation results.