The influences of subsurface cracks,distributing along the axial direction,on the rolling contact fatigue(RCF)faliure in a bearing ring are investigated.A realistic three-dimensional model of the bearing ring containi...The influences of subsurface cracks,distributing along the axial direction,on the rolling contact fatigue(RCF)faliure in a bearing ring are investigated.A realistic three-dimensional model of the bearing ring containing three subsurface cracks is used to evaluate the fatigue crack propagation based on stress intensity factor(SIF)calculations.Moreover,the distributions of the subsurface cracks along the axial direction are varied to study their effects on RCF.The results provide valuable guidelines for enhanced understanding of RCF in bearings.展开更多
This paper theoretically investigates the effects of stick-slip in roiling contact zone on stress intensity factors (SIFs) for sub- surface short cracks. New mathematical models for SIFs including stick-slip ratio a...This paper theoretically investigates the effects of stick-slip in roiling contact zone on stress intensity factors (SIFs) for sub- surface short cracks. New mathematical models for SIFs including stick-slip ratio are deduced in two cases. One is a subsur- face short crack parallel to surface, and the numerical analysis shows that the value of Kn increases with the increase of stick-slip ratio; the other is a subsurface short crack perpendicular to the surface, and the numerical analysis indicates that the positive value of KI decreases with the increase of stick-slip ratio. As AKI and AKI are necessary to evaluate the fa- tigue crack propagation rate or fatigue lifetime, the influences of stick-slip ratio on them are then discussed. It is found that the maximum variations of AK1 and AKu are both around 3.0% due to stick-slip ratio variation.展开更多
基金supported by the National Basic Research Program of China(Grant No.2011CB706605)State Key Program of National Natural Science Foundation of China(Grant No.51135007)+1 种基金Innovative Research Groups of the National Natural Science Foundation of Hubei Province(Grant No.2011CDA12)the Fundamental Research Funds for the Central Universities(Grant Nos.2012-Ia-017,2013-IV-014)for the support given to this research
文摘The influences of subsurface cracks,distributing along the axial direction,on the rolling contact fatigue(RCF)faliure in a bearing ring are investigated.A realistic three-dimensional model of the bearing ring containing three subsurface cracks is used to evaluate the fatigue crack propagation based on stress intensity factor(SIF)calculations.Moreover,the distributions of the subsurface cracks along the axial direction are varied to study their effects on RCF.The results provide valuable guidelines for enhanced understanding of RCF in bearings.
基金supported by the National Science and Technology Supporting Program(Grant No.2011BAF09B01)
文摘This paper theoretically investigates the effects of stick-slip in roiling contact zone on stress intensity factors (SIFs) for sub- surface short cracks. New mathematical models for SIFs including stick-slip ratio are deduced in two cases. One is a subsur- face short crack parallel to surface, and the numerical analysis shows that the value of Kn increases with the increase of stick-slip ratio; the other is a subsurface short crack perpendicular to the surface, and the numerical analysis indicates that the positive value of KI decreases with the increase of stick-slip ratio. As AKI and AKI are necessary to evaluate the fa- tigue crack propagation rate or fatigue lifetime, the influences of stick-slip ratio on them are then discussed. It is found that the maximum variations of AK1 and AKu are both around 3.0% due to stick-slip ratio variation.