针对复杂不确定性环境下具有不规则形状的多扩展目标跟踪问题,提出了一种基于星凸形随机超曲面模型(Starconvex RHM)的多扩展目标多伯努利滤波算法.首先,在有限集统计(Finite set statistics,FISST)理论框架下,采用多伯努利随机有限集(M...针对复杂不确定性环境下具有不规则形状的多扩展目标跟踪问题,提出了一种基于星凸形随机超曲面模型(Starconvex RHM)的多扩展目标多伯努利滤波算法.首先,在有限集统计(Finite set statistics,FISST)理论框架下,采用多伯努利随机有限集(MBer-RFS)和泊松RFS(Possion-RFS)分别描述多扩展目标的状态和观测,并给出扩展目标势均衡多目标多伯努利(ET-CBMeMBer)滤波器.其次,利用RHM去描述任意星凸形扩展目标的量测源分布,提出了容积卡尔曼高斯混合星凸形多扩展目标多伯努利滤波器.此外,本文给出了一种多扩展目标不规则形状估计性能的评价指标.最后,通过多扩展目标和具有形状突变的多群目标的跟踪仿真实验验证了本文方法的有效性.展开更多
文摘针对复杂不确定性环境下具有不规则形状的多扩展目标跟踪问题,提出了一种基于星凸形随机超曲面模型(Starconvex RHM)的多扩展目标多伯努利滤波算法.首先,在有限集统计(Finite set statistics,FISST)理论框架下,采用多伯努利随机有限集(MBer-RFS)和泊松RFS(Possion-RFS)分别描述多扩展目标的状态和观测,并给出扩展目标势均衡多目标多伯努利(ET-CBMeMBer)滤波器.其次,利用RHM去描述任意星凸形扩展目标的量测源分布,提出了容积卡尔曼高斯混合星凸形多扩展目标多伯努利滤波器.此外,本文给出了一种多扩展目标不规则形状估计性能的评价指标.最后,通过多扩展目标和具有形状突变的多群目标的跟踪仿真实验验证了本文方法的有效性.