为解决自动驾驶系统中车辆自主定位与导航无法准确估计车身位姿及导航路径不够平滑等问题,提出一种基于先验激光雷达点云地图的定位与导航方法。利用点云分割技术分离出可行区域以及潜在的风险源,研究基于优化收敛流程的NDT(Normal Dist...为解决自动驾驶系统中车辆自主定位与导航无法准确估计车身位姿及导航路径不够平滑等问题,提出一种基于先验激光雷达点云地图的定位与导航方法。利用点云分割技术分离出可行区域以及潜在的风险源,研究基于优化收敛流程的NDT(Normal Distribution Transform)点云配准定位方法,并对传统A*算法从动态权重设计和扩展领域优先搜索策略两方面进行改进,以适应自动驾驶的实时定位与导航需要。实验采用百度Apollo自动驾驶开发套件(D-KIT)进行多组对照实验,在体素降采样Leafsize参数为1(高采样)、1.2(中采样)与1.5(低采样)时,定位耗时分别降低了27.77%,38.75%和38.30%。选取四组符合实际驾驶需求情况进行导航实验,改进后导航路径最大曲率分别降低了80.9%,74.9%,65%,69.5%,导航过程路径曲率保持较低且稳定平滑,曲率数据符合车辆动力学。为车辆定位与高精度导航提供有效方法。展开更多
针对低剂量计算机断层扫描(CT)重建图像时出现明显条形伪影的现象,提出一种结合非局部均值模糊扩散和扩展邻域双边滤波的中值先验(MP)重建算法。首先,使用基于非局部均值模糊扩散方法对中值先验分布的最大后验(MAP)重建算法进行改进,以...针对低剂量计算机断层扫描(CT)重建图像时出现明显条形伪影的现象,提出一种结合非局部均值模糊扩散和扩展邻域双边滤波的中值先验(MP)重建算法。首先,使用基于非局部均值模糊扩散方法对中值先验分布的最大后验(MAP)重建算法进行改进,以减少重建图像中的噪声;然后,采用基于扩展邻域的双边滤波方法对重建图像进行处理,以保持图像的边缘和细节信息,进一步提高重建图像的信噪比。采用Shepp-Logan模型和胸腔模型来验证算法的有效性,实验结果表明,与滤波反投影(FBP)、中值根先验(MRP)、非局部均值模糊扩散的MP重建(NLMMP)算法和非局部均值双边滤波的MP重建(NLMBFMP)算法相比,所提新算法的归一化均方距离和均方绝对误差最小,且信噪比最高,分别为10.20 d B和15.51 d B。该重建算法可以在对重建图像进行降噪的同时保持了图像的边缘和细节信息,改善了低剂量CT图像质量退化的问题,获得高信噪比和高质量的重建图像。展开更多
文摘为解决自动驾驶系统中车辆自主定位与导航无法准确估计车身位姿及导航路径不够平滑等问题,提出一种基于先验激光雷达点云地图的定位与导航方法。利用点云分割技术分离出可行区域以及潜在的风险源,研究基于优化收敛流程的NDT(Normal Distribution Transform)点云配准定位方法,并对传统A*算法从动态权重设计和扩展领域优先搜索策略两方面进行改进,以适应自动驾驶的实时定位与导航需要。实验采用百度Apollo自动驾驶开发套件(D-KIT)进行多组对照实验,在体素降采样Leafsize参数为1(高采样)、1.2(中采样)与1.5(低采样)时,定位耗时分别降低了27.77%,38.75%和38.30%。选取四组符合实际驾驶需求情况进行导航实验,改进后导航路径最大曲率分别降低了80.9%,74.9%,65%,69.5%,导航过程路径曲率保持较低且稳定平滑,曲率数据符合车辆动力学。为车辆定位与高精度导航提供有效方法。
文摘针对低剂量计算机断层扫描(CT)重建图像时出现明显条形伪影的现象,提出一种结合非局部均值模糊扩散和扩展邻域双边滤波的中值先验(MP)重建算法。首先,使用基于非局部均值模糊扩散方法对中值先验分布的最大后验(MAP)重建算法进行改进,以减少重建图像中的噪声;然后,采用基于扩展邻域的双边滤波方法对重建图像进行处理,以保持图像的边缘和细节信息,进一步提高重建图像的信噪比。采用Shepp-Logan模型和胸腔模型来验证算法的有效性,实验结果表明,与滤波反投影(FBP)、中值根先验(MRP)、非局部均值模糊扩散的MP重建(NLMMP)算法和非局部均值双边滤波的MP重建(NLMBFMP)算法相比,所提新算法的归一化均方距离和均方绝对误差最小,且信噪比最高,分别为10.20 d B和15.51 d B。该重建算法可以在对重建图像进行降噪的同时保持了图像的边缘和细节信息,改善了低剂量CT图像质量退化的问题,获得高信噪比和高质量的重建图像。