The extended DLVO theory was used to analyze the stability of emulsion stabilized by solid particles. It was emphasized that emulsion droplets covered by solid particles behaved as congener solid granules with the sam...The extended DLVO theory was used to analyze the stability of emulsion stabilized by solid particles. It was emphasized that emulsion droplets covered by solid particles behaved as congener solid granules with the same diameter as droplets. The interaction potential energy curves between emulsion droplets stabilized by mica particles in the copper solvent extraction system were calculated. The results show that the effect of hydration repulsive forces are more powerful than that of electrostatic forces on stabilizing droplets for O/W emulsions. The energy barrier between droplets increases dramatically by about 7 × 103 kT when the hydration repulsion is considered.展开更多
Coal slimes are mainly composed of coal and clay particles.The interaction energies among these particles were calculated using extended DLVO(DERJAGUIN-LANDAU-VERWEY-OVERBEEK)theory and the aggregation mechanisms were...Coal slimes are mainly composed of coal and clay particles.The interaction energies among these particles were calculated using extended DLVO(DERJAGUIN-LANDAU-VERWEY-OVERBEEK)theory and the aggregation mechanisms were analyzed based on the settling experiments for coal-kaolinite and coal-montmorillonite suspensions,respectively,under different conditions of water hardness.The results indicate that for coal-kaolinite suspensions,as the water hardness reaches 10.0mol/L,the coal particles aggregate with each other easily,and then,the coal particles may aggregate with kaolinite particles.However,no aggregation occurs between kaolinite particles.A clay platelet network is formed in coal-montmorillonite suspensions by montmorillonite particles and coal particles are captured into the network.Coal and montmorillonite particles settle completely.展开更多
Effects of stirring speed and time, pH and sodium oleate concentration on the shear hydrophobic flocculation of ultrafine Anshan hematite with sodium oleate as the surfactant were discussed. The results show that thes...Effects of stirring speed and time, pH and sodium oleate concentration on the shear hydrophobic flocculation of ultrafine Anshan hematite with sodium oleate as the surfactant were discussed. The results show that these parameters significantly affect the shear hydrophobic flocculation of ultrafine hematite. The optimum conditions for the flocculation are: stirring speed 1 400 r/min, flocculation time 20 min, pH 9 and sodium oleate concentration 3.94×10-4 mol/L; the flotation recovery of hematite flocs is remarkably high compared with non flocculated ultrafine hematite. According to the extended DLVO theory, the total interaction potential of Anshan ultrafine hematite was determined. The calculation results indicate that the hydrophobic flocculation state of the ultrafine hematite-sodium oleate system is mainly dominated by electric double layer repulsive interaction potential and hydrophobic interaction potential. A mechanical agitation is required to impart particles a kinetic energy to overcome potential barrier between them due to the existence of electric double layer repulsive interaction potential. Those particles further approach to form flocs due to the significant increase of the hydrophobic interaction potential.展开更多
文摘根据Young s方程的推导公式结合接触角的测定结果计算黄铁矿和氧化亚铁硫杆菌的表面能参数。结果表明,氧化亚铁硫杆菌的表面能明显高于黄铁矿的表面能。应用热力学计算氧化亚铁硫杆菌在黄铁矿表面吸附的自由能,发现其吸附自由能为正值,无法解释氧化亚铁硫杆菌在黄铁矿表面的吸附现象,而通过扩展DLVO理论建立的Lifshitz-van der Waals(LW)、Lewis acid-base(AB)和静电(EL)作用自由能与作用距离(d)之间的势能曲线,能够准确的预言氧化亚铁硫杆菌在黄铁矿表面的吸附现象。
文摘The extended DLVO theory was used to analyze the stability of emulsion stabilized by solid particles. It was emphasized that emulsion droplets covered by solid particles behaved as congener solid granules with the same diameter as droplets. The interaction potential energy curves between emulsion droplets stabilized by mica particles in the copper solvent extraction system were calculated. The results show that the effect of hydration repulsive forces are more powerful than that of electrostatic forces on stabilizing droplets for O/W emulsions. The energy barrier between droplets increases dramatically by about 7 × 103 kT when the hydration repulsion is considered.
基金Project(50425168)supported by the National Natural Science Foundation of ChinaProject (0100471413)supported by China Postdoctoral Science FoundationProject (201104547)supported by Pisdoctorcal Science Foundation of Jiangsu Province,China
文摘Coal slimes are mainly composed of coal and clay particles.The interaction energies among these particles were calculated using extended DLVO(DERJAGUIN-LANDAU-VERWEY-OVERBEEK)theory and the aggregation mechanisms were analyzed based on the settling experiments for coal-kaolinite and coal-montmorillonite suspensions,respectively,under different conditions of water hardness.The results indicate that for coal-kaolinite suspensions,as the water hardness reaches 10.0mol/L,the coal particles aggregate with each other easily,and then,the coal particles may aggregate with kaolinite particles.However,no aggregation occurs between kaolinite particles.A clay platelet network is formed in coal-montmorillonite suspensions by montmorillonite particles and coal particles are captured into the network.Coal and montmorillonite particles settle completely.
基金Project (20062026) supported by Natural Science Foundation of Liaoning Province, China
文摘Effects of stirring speed and time, pH and sodium oleate concentration on the shear hydrophobic flocculation of ultrafine Anshan hematite with sodium oleate as the surfactant were discussed. The results show that these parameters significantly affect the shear hydrophobic flocculation of ultrafine hematite. The optimum conditions for the flocculation are: stirring speed 1 400 r/min, flocculation time 20 min, pH 9 and sodium oleate concentration 3.94×10-4 mol/L; the flotation recovery of hematite flocs is remarkably high compared with non flocculated ultrafine hematite. According to the extended DLVO theory, the total interaction potential of Anshan ultrafine hematite was determined. The calculation results indicate that the hydrophobic flocculation state of the ultrafine hematite-sodium oleate system is mainly dominated by electric double layer repulsive interaction potential and hydrophobic interaction potential. A mechanical agitation is required to impart particles a kinetic energy to overcome potential barrier between them due to the existence of electric double layer repulsive interaction potential. Those particles further approach to form flocs due to the significant increase of the hydrophobic interaction potential.