阐述一种适用于非均质材料力学性能分析的扩展的多尺度有限元法(Extended Multiscale Finite Element Method,EMsFEM)的基本原理.该方法的基本思想是利用数值方法构造能反映胞体单元内部材料非均质影响的多尺度基函数,在此基础上求得粗...阐述一种适用于非均质材料力学性能分析的扩展的多尺度有限元法(Extended Multiscale Finite Element Method,EMsFEM)的基本原理.该方法的基本思想是利用数值方法构造能反映胞体单元内部材料非均质影响的多尺度基函数,在此基础上求得粗网格层次的等效单元刚度阵,从而在粗网格尺度上对原问题进行求解,很大程度地减少计算量.以该方法进行的具有周期和随机微观结构的材料计算示例,通过与传统有限元法的结果比较,说明这一方法的有效性.EMsFEM的优势在于,能容易地进行降尺度计算,可较准确地求得单元内部的微观应力应变信息,在非均质材料强度和非线性分析中有很大的应用潜力.展开更多
文摘阐述一种适用于非均质材料力学性能分析的扩展的多尺度有限元法(Extended Multiscale Finite Element Method,EMsFEM)的基本原理.该方法的基本思想是利用数值方法构造能反映胞体单元内部材料非均质影响的多尺度基函数,在此基础上求得粗网格层次的等效单元刚度阵,从而在粗网格尺度上对原问题进行求解,很大程度地减少计算量.以该方法进行的具有周期和随机微观结构的材料计算示例,通过与传统有限元法的结果比较,说明这一方法的有效性.EMsFEM的优势在于,能容易地进行降尺度计算,可较准确地求得单元内部的微观应力应变信息,在非均质材料强度和非线性分析中有很大的应用潜力.