该文基于现场可编程门阵列(field-programmable gate array,FPGA),为永磁同步电机驱动提出一种扩张控制集模型预测电流控制策略(model predictive current control,MPCC)。由于在每个控制周期内只有8个基本电压矢量可供选择,传统有限控...该文基于现场可编程门阵列(field-programmable gate array,FPGA),为永磁同步电机驱动提出一种扩张控制集模型预测电流控制策略(model predictive current control,MPCC)。由于在每个控制周期内只有8个基本电压矢量可供选择,传统有限控制集模型预测电流控制(finite control set MPCC,FCS-MPCC)稳态性能较低。为此,文中采用具有818个可选矢量的ECS来实现更精细的电压输出。为减轻因电压矢量大幅增加而带来的计算负担,设计一种简化的最优矢量搜索策略,且可推广用于其他多目标成本函数。基于算法固有并行性,将所提ECS-MPCC方法在FPGA中进行实现,使电流环总控制时间缩短至0.59μs,从而可以消除计算延迟,提高电流环动态性能。最后,通过仿真和实验,验证所提ECS-MPCC策略的有效性。实验结果表明,与传统FCS-MPCC相比,ECS-MPCC的相电流总谐波失真降低77%。展开更多
In order to overcome the wide-range load tracking and unknown disturbance issues of an ultra-supercritical boiler- turbine unit, a fuzzy disturbance rejection predictive control approach is proposed using the techniq...In order to overcome the wide-range load tracking and unknown disturbance issues of an ultra-supercritical boiler- turbine unit, a fuzzy disturbance rejection predictive control approach is proposed using the techniques of fuzzy scheduling, model predictive control and extended state observer. Local state-space models are established on the basis of nonlinearity analysis and subspace identification. To eiJiance thedisturbance rejection capability of the controller, a extended state observer is employed to estimate unnown disturbances and model mismatches. The disturbance estimation ennaced local predictive controllers ae subsequently devised based on the local models, the performance of which is further strengthened by incorporating the fuzzy scheduling technique. The simulation results verify the merits of the proposed strategy in achieving satisfactory wide-range load tracking ad disturbance rejection performance.展开更多
In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynam...In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.展开更多
In this paper, we prove that the control function of the dilatation function of Beurling-Ahlfors extension is convex. Using the quasi-symmetric function ρ, we get a relatively sharp estimate of the dilatation functio...In this paper, we prove that the control function of the dilatation function of Beurling-Ahlfors extension is convex. Using the quasi-symmetric function ρ, we get a relatively sharp estimate of the dilatation function: D(x,y)≤ 17/32 (ρ(x, y) + 1) (ρ(x + y/2, y/2) +ρ(x - y/2, y/2) +2) , which improves the results before. We also show that the above result is asymptotically precise.展开更多
In order to improve the control performance of three-phase permanent magnet synchronous motor(PMSM)system,an active disturbance rejection finite control set-mode predictive control(FCS-MPC)strategy based on improved e...In order to improve the control performance of three-phase permanent magnet synchronous motor(PMSM)system,an active disturbance rejection finite control set-mode predictive control(FCS-MPC)strategy based on improved extended state observer(ESO)is proposed in this paper.ESO is designed based on the arc-hyperbolic sine function to obtain estimations of rotating speed and back electromotive force(EMF)term of motor speed.Active disturbance rejection control(ADRC)is applied as speed controller.The proposed FCS-MPC strategy aims to reduce the electromagnetic torque ripple and the complexity and calculation of the algorithm.Compared with the FCS-MPC strategy based on PI controller,the constructed control strategy can guarantee the reliable and stable operation of PMSM system,and has good speed tracking,anti-interference ability and robustness.展开更多
Aiming at the problem that the traditional control strategy of permanent magnet synchronous motor(PMSM)for electric vehicles has low control performance,a novel adaptive non-singular fast terminal sliding mode control...Aiming at the problem that the traditional control strategy of permanent magnet synchronous motor(PMSM)for electric vehicles has low control performance,a novel adaptive non-singular fast terminal sliding mode control(ANFTSMC)model predictive torque control(MPTC)strategy is proposed.A new adaptive exponential approach rate is designed,and the traditional switching function sgn()is replaced by the hyperbolic tangent function tanh().A new ANFTSMC with extended state observer(ESO)is constructed as the speed regulator of the system,and ESO can observe disturbances.This improved method weakens chattering and improves the robustness of the system.To realize sensorless control of the speed control system,an ESO speed observer based on tanh(Fal)is constructed.Compared with the traditional ESO based on Fal function,the observation error is smaller,and the observation accuracy is higher.Finally,aiming at the model predictive torque control strategy used,a new objective function construction method is proposed,which avoids the design of weight coefficient,and the traditional voltage vector selection method is improved and optimized,which reduces the calculation amount of the algorithm.展开更多
Automatic splicing of interrupted yarns in ring spinning has always been a problem in the industry.Factors such as low yarn strengths and environmental influence on yarn tensions make it difficult to control the yarn ...Automatic splicing of interrupted yarns in ring spinning has always been a problem in the industry.Factors such as low yarn strengths and environmental influence on yarn tensions make it difficult to control the yarn tension during the robotic splicing process.The purpose of this research is to design active disturbance rejection control(ADRC)for a third-order nonlinear tension system subject to external disturbances.Firstly,a third-order extended state observer(ESO)is designed to achieve the suppression and the compensation of the internal modeling error and the external disturbances of the system.Secondly,the adaptive gain error feedback control and the filtering process are designed to reduce the influence of sensor noise on the disturbance observation.Finally,the tension control during the splicing process is simulated and experimented,and the experiments show that the method has good robustness in the tension tracking task under a dynamic environment,which verifies the effectiveness of the method.展开更多
文摘该文基于现场可编程门阵列(field-programmable gate array,FPGA),为永磁同步电机驱动提出一种扩张控制集模型预测电流控制策略(model predictive current control,MPCC)。由于在每个控制周期内只有8个基本电压矢量可供选择,传统有限控制集模型预测电流控制(finite control set MPCC,FCS-MPCC)稳态性能较低。为此,文中采用具有818个可选矢量的ECS来实现更精细的电压输出。为减轻因电压矢量大幅增加而带来的计算负担,设计一种简化的最优矢量搜索策略,且可推广用于其他多目标成本函数。基于算法固有并行性,将所提ECS-MPCC方法在FPGA中进行实现,使电流环总控制时间缩短至0.59μs,从而可以消除计算延迟,提高电流环动态性能。最后,通过仿真和实验,验证所提ECS-MPCC策略的有效性。实验结果表明,与传统FCS-MPCC相比,ECS-MPCC的相电流总谐波失真降低77%。
基金The National Natural Science Foundation of China(No.51506029,51576041)the Natural Science Foundation of Jiangsu Province(No.BK20150631)China Postdoctoral Science Foundation
文摘In order to overcome the wide-range load tracking and unknown disturbance issues of an ultra-supercritical boiler- turbine unit, a fuzzy disturbance rejection predictive control approach is proposed using the techniques of fuzzy scheduling, model predictive control and extended state observer. Local state-space models are established on the basis of nonlinearity analysis and subspace identification. To eiJiance thedisturbance rejection capability of the controller, a extended state observer is employed to estimate unnown disturbances and model mismatches. The disturbance estimation ennaced local predictive controllers ae subsequently devised based on the local models, the performance of which is further strengthened by incorporating the fuzzy scheduling technique. The simulation results verify the merits of the proposed strategy in achieving satisfactory wide-range load tracking ad disturbance rejection performance.
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(2019-KYYWF-0205)supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.
基金Supported by the National Natural Science Foundation of China(10271077)Supported by the Educational Department of Zhejiang Province Natural Science Project(20030768)
文摘In this paper, we prove that the control function of the dilatation function of Beurling-Ahlfors extension is convex. Using the quasi-symmetric function ρ, we get a relatively sharp estimate of the dilatation function: D(x,y)≤ 17/32 (ρ(x, y) + 1) (ρ(x + y/2, y/2) +ρ(x - y/2, y/2) +2) , which improves the results before. We also show that the above result is asymptotically precise.
基金National Natural Science Foundation of China(No.61461023)Gansu Provincial Department of Education Project(No.2016B-036)
文摘In order to improve the control performance of three-phase permanent magnet synchronous motor(PMSM)system,an active disturbance rejection finite control set-mode predictive control(FCS-MPC)strategy based on improved extended state observer(ESO)is proposed in this paper.ESO is designed based on the arc-hyperbolic sine function to obtain estimations of rotating speed and back electromotive force(EMF)term of motor speed.Active disturbance rejection control(ADRC)is applied as speed controller.The proposed FCS-MPC strategy aims to reduce the electromagnetic torque ripple and the complexity and calculation of the algorithm.Compared with the FCS-MPC strategy based on PI controller,the constructed control strategy can guarantee the reliable and stable operation of PMSM system,and has good speed tracking,anti-interference ability and robustness.
基金Project of National Natural Science Foundation of China(No.61863023)。
文摘Aiming at the problem that the traditional control strategy of permanent magnet synchronous motor(PMSM)for electric vehicles has low control performance,a novel adaptive non-singular fast terminal sliding mode control(ANFTSMC)model predictive torque control(MPTC)strategy is proposed.A new adaptive exponential approach rate is designed,and the traditional switching function sgn()is replaced by the hyperbolic tangent function tanh().A new ANFTSMC with extended state observer(ESO)is constructed as the speed regulator of the system,and ESO can observe disturbances.This improved method weakens chattering and improves the robustness of the system.To realize sensorless control of the speed control system,an ESO speed observer based on tanh(Fal)is constructed.Compared with the traditional ESO based on Fal function,the observation error is smaller,and the observation accuracy is higher.Finally,aiming at the model predictive torque control strategy used,a new objective function construction method is proposed,which avoids the design of weight coefficient,and the traditional voltage vector selection method is improved and optimized,which reduces the calculation amount of the algorithm.
基金National Natural Science Foundation of China(No.52275478)Fundamental Research Funds for the Central Universities,China(No.2232024Y-01)DHU Distinguished Young Professor Program,China(No.LZB2023001)。
文摘Automatic splicing of interrupted yarns in ring spinning has always been a problem in the industry.Factors such as low yarn strengths and environmental influence on yarn tensions make it difficult to control the yarn tension during the robotic splicing process.The purpose of this research is to design active disturbance rejection control(ADRC)for a third-order nonlinear tension system subject to external disturbances.Firstly,a third-order extended state observer(ESO)is designed to achieve the suppression and the compensation of the internal modeling error and the external disturbances of the system.Secondly,the adaptive gain error feedback control and the filtering process are designed to reduce the influence of sensor noise on the disturbance observation.Finally,the tension control during the splicing process is simulated and experimented,and the experiments show that the method has good robustness in the tension tracking task under a dynamic environment,which verifies the effectiveness of the method.