该文基于现场可编程门阵列(field-programmable gate array,FPGA),为永磁同步电机驱动提出一种扩张控制集模型预测电流控制策略(model predictive current control,MPCC)。由于在每个控制周期内只有8个基本电压矢量可供选择,传统有限控...该文基于现场可编程门阵列(field-programmable gate array,FPGA),为永磁同步电机驱动提出一种扩张控制集模型预测电流控制策略(model predictive current control,MPCC)。由于在每个控制周期内只有8个基本电压矢量可供选择,传统有限控制集模型预测电流控制(finite control set MPCC,FCS-MPCC)稳态性能较低。为此,文中采用具有818个可选矢量的ECS来实现更精细的电压输出。为减轻因电压矢量大幅增加而带来的计算负担,设计一种简化的最优矢量搜索策略,且可推广用于其他多目标成本函数。基于算法固有并行性,将所提ECS-MPCC方法在FPGA中进行实现,使电流环总控制时间缩短至0.59μs,从而可以消除计算延迟,提高电流环动态性能。最后,通过仿真和实验,验证所提ECS-MPCC策略的有效性。实验结果表明,与传统FCS-MPCC相比,ECS-MPCC的相电流总谐波失真降低77%。展开更多
文摘该文基于现场可编程门阵列(field-programmable gate array,FPGA),为永磁同步电机驱动提出一种扩张控制集模型预测电流控制策略(model predictive current control,MPCC)。由于在每个控制周期内只有8个基本电压矢量可供选择,传统有限控制集模型预测电流控制(finite control set MPCC,FCS-MPCC)稳态性能较低。为此,文中采用具有818个可选矢量的ECS来实现更精细的电压输出。为减轻因电压矢量大幅增加而带来的计算负担,设计一种简化的最优矢量搜索策略,且可推广用于其他多目标成本函数。基于算法固有并行性,将所提ECS-MPCC方法在FPGA中进行实现,使电流环总控制时间缩短至0.59μs,从而可以消除计算延迟,提高电流环动态性能。最后,通过仿真和实验,验证所提ECS-MPCC策略的有效性。实验结果表明,与传统FCS-MPCC相比,ECS-MPCC的相电流总谐波失真降低77%。