The Ryukyu trench-arc system can be divided into two types according to its subduction model. The normal subduction in the northern part of the Philippine Sea plate creates a hinge sedimentary wedge with large deforma...The Ryukyu trench-arc system can be divided into two types according to its subduction model. The normal subduction in the northern part of the Philippine Sea plate creates a hinge sedimentary wedge with large deformation at the collision front, while the oblique subduction in the southern part gives rise to a smaller accretion with small deformation than that in the northern part. The mechanisms that cause the distinction between these two types have been analysed and calculated by using gravity data based on the lithosphere rheology and the stress state of the lithosphere in the subduction boundary. The two types of subduction model are associated with the internal extension in the southern Okinawa Trough and the small extension in the northern part. The difference of the stress state between the two types of subduction model is also manifested in other tectonic features, such as topography, volcanic activity and crust movement. Modeling bathymetric and gravity data from this area suggests that the oblique subduction of low angle, together with smooth geometry of the overlying plate crust, results in small stress released on the south of the trench by the subduction plate. The intraplate faults in the southern Okinawa Trough behind the trench stand in surplus intensive stress. On the other hand, the normal subduction of high angle, together with strong undulation geometry of the overlying crust, results in more intensive stress released in the northern Ryukyu Trench than that in the south. The intraplate faults in the northern Okinawa Trough behind the northern Ryukyu Trench stand in small stress.展开更多
Based on their Euler poles, we calculated the relative velocities between every two plates in the typical global plate motion models, respectively, and estimated the area change along these boundaries. In our calculat...Based on their Euler poles, we calculated the relative velocities between every two plates in the typical global plate motion models, respectively, and estimated the area change along these boundaries. In our calculations, plates on both sides accommodated area changes depending on the boundary types: extensional, convergent or transform, so we can estimate area change of each plate and then globally. Our preliminary results show that the area of the southern hemisphere increased while that of the northern hemisphere decreased over the past I million years, and global area has increased by 26,000km^2 to 36,000km^2, which corresponds to the 160m - 250m increment on the Earth's radius if all these area increments are attributed to Earth's expansion. Taking the NUVEL-1 model as an example, of the 14 plates in this model, 11 are decreasing, but the global area has increased because of the larger increment amount from Africa, North America and Antarctica. Finally, we also discussed factors affecting the global area change such as subduction zone retreating and back-arc spreading.展开更多
文摘The Ryukyu trench-arc system can be divided into two types according to its subduction model. The normal subduction in the northern part of the Philippine Sea plate creates a hinge sedimentary wedge with large deformation at the collision front, while the oblique subduction in the southern part gives rise to a smaller accretion with small deformation than that in the northern part. The mechanisms that cause the distinction between these two types have been analysed and calculated by using gravity data based on the lithosphere rheology and the stress state of the lithosphere in the subduction boundary. The two types of subduction model are associated with the internal extension in the southern Okinawa Trough and the small extension in the northern part. The difference of the stress state between the two types of subduction model is also manifested in other tectonic features, such as topography, volcanic activity and crust movement. Modeling bathymetric and gravity data from this area suggests that the oblique subduction of low angle, together with smooth geometry of the overlying plate crust, results in small stress released on the south of the trench by the subduction plate. The intraplate faults in the southern Okinawa Trough behind the trench stand in surplus intensive stress. On the other hand, the normal subduction of high angle, together with strong undulation geometry of the overlying crust, results in more intensive stress released in the northern Ryukyu Trench than that in the south. The intraplate faults in the northern Okinawa Trough behind the northern Ryukyu Trench stand in small stress.
基金sponsored by the National Natural Science Foundation (40574047),China
文摘Based on their Euler poles, we calculated the relative velocities between every two plates in the typical global plate motion models, respectively, and estimated the area change along these boundaries. In our calculations, plates on both sides accommodated area changes depending on the boundary types: extensional, convergent or transform, so we can estimate area change of each plate and then globally. Our preliminary results show that the area of the southern hemisphere increased while that of the northern hemisphere decreased over the past I million years, and global area has increased by 26,000km^2 to 36,000km^2, which corresponds to the 160m - 250m increment on the Earth's radius if all these area increments are attributed to Earth's expansion. Taking the NUVEL-1 model as an example, of the 14 plates in this model, 11 are decreasing, but the global area has increased because of the larger increment amount from Africa, North America and Antarctica. Finally, we also discussed factors affecting the global area change such as subduction zone retreating and back-arc spreading.