期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
时空分数阶扩散偏微分方程的谱方法
1
作者 党明杰 蒋利华 《桂林电子科技大学学报》 2024年第1期98-104,共7页
扩散方程是物理学建模最基本的方程之一。研究时空分数阶扩散偏微分方程的谱方法数值求解,时间方向采用Caputo分数阶导数的L1插值逼近格式,构造了原方程在时间方向上的半离散格式,证明了半离散格式解的存在唯一性和稳定性,并给出了误差... 扩散方程是物理学建模最基本的方程之一。研究时空分数阶扩散偏微分方程的谱方法数值求解,时间方向采用Caputo分数阶导数的L1插值逼近格式,构造了原方程在时间方向上的半离散格式,证明了半离散格式解的存在唯一性和稳定性,并给出了误差分析方面结论的相关证明。在半离散格式的基础上,空间方向采用Legendre谱方法离散得到原方程的全离散格式,进一步证明了此全离散格式的解存在且唯一,而是无条件稳定的,并严格证明了数值解与精确解之间的误差方面的结论。 展开更多
关键词 时空分数阶扩散偏微分方程 谱方法 解的存在唯一性 稳定性 误差分析
下载PDF
基于改进扩散偏微分方程的路面裂纹病害检测 被引量:2
2
作者 郑大钊 《计算机仿真》 CSCD 北大核心 2012年第8期360-363,共4页
针对高速公路裂纹病害严重影响交通安全,研究了如何快速有效地检测路面裂纹病害的问题。为了克服路面杂质、油污等复杂背景的干扰以及传统的人工检测效率低下的难题,提出了一种基于改进扩散偏微分方程的路面裂纹病害检测方法。方法首先... 针对高速公路裂纹病害严重影响交通安全,研究了如何快速有效地检测路面裂纹病害的问题。为了克服路面杂质、油污等复杂背景的干扰以及传统的人工检测效率低下的难题,提出了一种基于改进扩散偏微分方程的路面裂纹病害检测方法。方法首先对实时采集到的路面图像使用改进的扩散偏微分方程进行去噪处理,以消除背景噪声和路面油渍的干扰,同时增强裂纹病害,进而构造三维地形模型,模型中路面裂纹属于地形中的"峡谷",通过梯度算子分析约束,可检测路面裂纹病害,确定路面是否需要维修。实验分析表明,算法能快速有效检测路面裂纹病害,对提高路面病害检测效率有重要意义。 展开更多
关键词 路面病害检测 扩散偏微分方程 三维地形模型
下载PDF
基于梯度增强扩散的线形纹理图像去噪算法 被引量:1
3
作者 王坤 游安清 +1 位作者 邓浩 罗俊 《太赫兹科学与电子信息学报》 2014年第4期567-571,共5页
针对传统图像去噪中会破坏边缘纹理特征的现实问题,提出了一种基于梯度增强扩散的线形纹理图像的去噪算法。算法主要针对含有线形结构的纹理图像,在基于偏微分扩散方程的去噪过程中引入了结构分析,并根据局部梯度变化,重新定义了扩散系... 针对传统图像去噪中会破坏边缘纹理特征的现实问题,提出了一种基于梯度增强扩散的线形纹理图像的去噪算法。算法主要针对含有线形结构的纹理图像,在基于偏微分扩散方程的去噪过程中引入了结构分析,并根据局部梯度变化,重新定义了扩散系数,能在有效增强边缘特征的同时去除图像中的小尺度噪声。仿真实验表明,与传统的高斯平滑去噪算法相比,在实现对线形纹理图像去噪的同时,能较大程度保留图像的线形纹理信息,具有一定的应用价值。 展开更多
关键词 图像去噪 梯度增强 扩散偏微分方程 线形纹理
下载PDF
城市表层土壤重金属污染扩散研究 被引量:2
4
作者 李一凡 李敏 张南 《环境科学与管理》 CAS 2012年第11期80-86,共7页
随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人... 随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。本文以某城市城区土壤地质环境调查获得的8种主要重金属污染物数据为例,通过建立重金属污染扩散数理模型,开展重金属空间分布、污染程度评价、传播特征研究,剖析重金属污染机理,追踪污染源,为城市土壤地质环境保护提供理论和方法依据。 展开更多
关键词 内梅罗指数 多元统计回归 扩散偏微分方程 三元回归 土壤重金属 污染扩散 污染源
下载PDF
解双边空间分数阶对流扩散方程的二阶隐式有限差分法 被引量:1
5
作者 朱琳 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期99-106,共8页
给出一类解变系数双边空间分数阶对流扩散方程的隐式有限差分格式,并证明这类格式当分数阶导数α∈[17(1/2)-1/2,2]时无条件稳定且由此得出收敛阶为O(Δt+h2)。最后给出数值算例验证。
关键词 变系数双边空间分数阶对流扩散偏微分方程 有限差分格式 无条件稳定 收敛阶
原文传递
Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional Dispersive Long Wave Equation 被引量:1
6
作者 WANGQi CHENYong ZHANGHong-Qing 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第6期975-982,共8页
In this work we devise an algebraic method to uniformly construct rational form solitary wave solutions and Jacobi and Weierstrass doubly periodic wave solutions of physical interest for nonlinear evolution equations.... In this work we devise an algebraic method to uniformly construct rational form solitary wave solutions and Jacobi and Weierstrass doubly periodic wave solutions of physical interest for nonlinear evolution equations. With the aid of symbolic computation, we apply the proposed method to solving the (1+1)-dimensional dispersive long wave equation and explicitly construct a series of exact solutions which include the rational form solitary wave solutions and elliptic doubly periodic wave solutions as special cases. 展开更多
关键词 elliptic equation rational expansion method rational form solitary wavesolutions rational form jacobi and weierstrass doubly periodic wave solutions symboliccomputation (1+1)-dimensional dispersive long wave equation
下载PDF
Further Extended Jacobi Elliptic Function Rational Expansion Method and New Families of Jacobi Elliptic Function Solutions to (2+1)-Dimensional Dispersive Long Wave Equation
7
作者 ZHANG Yuan-Yuan WANG Qi ZHANG Hong-Qing 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第2期199-206,共8页
In this paper, a further extended Jacobi elliptic function rationM expansion method is proposed for constructing new forms of exact solutions to nonlinear partial differential equations by making a more general transf... In this paper, a further extended Jacobi elliptic function rationM expansion method is proposed for constructing new forms of exact solutions to nonlinear partial differential equations by making a more general transformation. For illustration, we apply the method to (2+1)-dimensionM dispersive long wave equation and successfully obtain many new doubly periodic solutions. When the modulus m→1, these sohitions degenerate as soliton solutions. The method can be also applied to other nonlinear partial differential equations. 展开更多
关键词 doubly periodic solution soliton solution (2+1)-dimensional dispersive long wave equation
下载PDF
Lie Group Analysis and Invariant Solutions for Nonlinear Time-Fractional Diffusion-Convection Equations 被引量:2
8
作者 Cheng Chen Yao-Lin Jiang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第9期295-300,共6页
On the basis of Lie group theory,(1 + N)-dimensional time-fractional partial differential equations are studied and the expression of η_α~0 is given. As applications, two special forms of nonlinear time-fractional d... On the basis of Lie group theory,(1 + N)-dimensional time-fractional partial differential equations are studied and the expression of η_α~0 is given. As applications, two special forms of nonlinear time-fractional diffusionconvection equations are investigated by Lie group analysis method. Then the equations are reduced into fractional ordinary differential equations under group transformations. Therefore, the invariant solutions and some exact solutions are obtained. 展开更多
关键词 Lie group analysis Riemann-Liouville derivative invariant solution
原文传递
TRAVELING WAVE SOLUTIONS FOR A CLASS OF NONLINEAR DISPERSIVE EQUATIONS 被引量:38
9
作者 LIJIBIN LIUZHENGRONG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2002年第3期397-418,共22页
The method of the phase plane is emploied to investigate the solitary and periodic traveling waves for a class of nonlinear dispersive partial differential equations.By using the bifurcation theory of dynamical system... The method of the phase plane is emploied to investigate the solitary and periodic traveling waves for a class of nonlinear dispersive partial differential equations.By using the bifurcation theory of dynamical systems to do qualitative analysis,all possible phase portraits in the parametric space for the traveling wave systems are obtained.It can be shown that the existence of a singular straight line in the traveling wave system is the reason why smooth solitary wave solutions converge to solitary cusp wave solution when parameters are varied.The different parameter conditions for the existence of solitary and periodic wave solutions of different kinds are rigorously determined. 展开更多
关键词 Solitary wave Periodic wave Integrable system Bifurcation of phase portraits Smoothness of wave
原文传递
Two-dimensional finite element model to study calcium distribution in astrocytes in presence of excess buffer 被引量:5
10
作者 Brajesh Kumar Jha Neeru Adlakha M. N. Mehta 《International Journal of Biomathematics》 2014年第3期137-147,共11页
In this paper a finite element model is developed to study cytosolic calcium concen- tration distribution in astrocytes for a two-dimensional steady-state case in presence of excess buffer. The mathematical model of c... In this paper a finite element model is developed to study cytosolic calcium concen- tration distribution in astrocytes for a two-dimensional steady-state case in presence of excess buffer. The mathematical model of calcium diffusion in astrocytes leads to a boundary value problem involving elliptical partial differential equation. The model con- sists of reaction-diffusion phenomena, association and dissociation rates and buffer. A point source of calcium is incorporated in the model. Appropriate boundary conditions have been framed. Finite element method is employed to solve the problem. A MATLAB program has been developed for the entire problem and simulated to compute the numer- ical results. The numerical results have been used to plot calcium concentration profiles in astrocytes. The effect of ECTA, BAPTA and aCa influx on calcium concentration distribution in astrocytes is studied with the help of numerical results. 展开更多
关键词 Ca2+ profile BUFFER finite element method.
原文传递
One-dimensional heat equation with discontinuous conductance
11
作者 CHEN Zhen-Qing ZILI Mounir 《Science China Mathematics》 SCIE CSCD 2015年第1期97-108,共12页
We study a second-order parabolic equation with divergence form elliptic operator,having a piecewise constant diffusion coefficient with two points of discontinuity.Such partial differential equations appear in the mo... We study a second-order parabolic equation with divergence form elliptic operator,having a piecewise constant diffusion coefficient with two points of discontinuity.Such partial differential equations appear in the modelization of diffusion phenomena in medium consisting of three kinds of materials.Using probabilistic methods,we present an explicit expression of the fundamental solution under certain conditions.We also derive small-time asymptotic expansion of the PDE’s solutions in the general case.The obtained results are directly usable in applications. 展开更多
关键词 stochastic differential equation semimartingale local time strong solution skew Brownian mo-tion heat kernel asymptotic expansion
原文传递
On a reaction-diffusion model for sterile insect release method on a bounded domain
12
作者 Weihua Jiang Xin Li XingfuZou 《International Journal of Biomathematics》 2014年第3期119-135,共17页
We consider a system of partial differential equations that describes the interaction of the sterile and fertile species undergoing the sterile insect release method (SIRM). Unlike in the previous work [M. A. Lewis ... We consider a system of partial differential equations that describes the interaction of the sterile and fertile species undergoing the sterile insect release method (SIRM). Unlike in the previous work [M. A. Lewis and P. van den Driessche, Waves of extinction from sterile insect release, Math. Biosci. 5 (1992) 221 247] where the habitat is assumed to be the one-dimensional whole space ~, we consider this system in a bounded one- dimensional domain (interval). Our goal is to derive sufficient conditions for success of the SIRM. We show the existence of the fertile-free steady state and prove its stability. Using the releasing rate as the parameter, and by a saddle-node bifurcation analysis, we obtain conditions for existence of two co-persistence steady states, one stable and the other unstable. Biological implications of our mathematical results are that: (i) when the fertile population is at low level, the SIRM, even with small releasing rate, can successfully eradicate the fertile insects; (ii) when the fertile population is at a higher level, the SIRM can succeed as long as the strength of the sterile releasing is large enough, while the method may also fail if the releasing is not sufficient. 展开更多
关键词 Sterile insect release method diffusion saddle-node bifurcation upper lowersolution method.
原文传递
Global Existence of the Equilibrium Diffusion Model in Radiative Hydrodynamics
13
作者 Chunjin LIN Thierry GOUDON 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2011年第4期549-568,共20页
This paper is devoted to the analysis of the Cauchy problem for a system of PDEs arising in radiative hydrodynamics. This system, which comes from the so-called equilibrium diffusion regime, is a variant of the usual ... This paper is devoted to the analysis of the Cauchy problem for a system of PDEs arising in radiative hydrodynamics. This system, which comes from the so-called equilibrium diffusion regime, is a variant of the usual Euler equations, where the energy and pressure functionals are modified to take into account the effect of radiation and the energy balance containing a nonlinear diffusion term acting on the temperature. The problem is studied in the multi-dimensional framework. The authors identify the existence of a strictly convex entropy and a stability property of the system, and check that the Kawashima-Shizuta condition holds. Then, based on these structure properties, the wellposedness close to a constant state can be proved by using fine energy estimates. The asymptotic decay of the solutions are also investigated. 展开更多
关键词 Radiative hydrodynamics Initial value problem Equilibrium diffusion regime Energy method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部