The general behavior of micron-particles in the inner domain of porous ceramic vessel was simulated by computational fluid dynamics software in terms of sampling experimental data.The results show that there is an opt...The general behavior of micron-particles in the inner domain of porous ceramic vessel was simulated by computational fluid dynamics software in terms of sampling experimental data.The results show that there is an optimum porosity of 0.32 to get a higher efficiency and lower pressure drop during filtration.According to the results of simulation and experiment,it is evident that lower inlet velocity can maintain lower pressure drop and obtain higher collection efficiency and inlet concentration also has a crucial influence on the collection efficiency.The collection efficiency of equipment increases significantly with the increase of inlet concentration when the inlet concentration is less than 6.3 g/m3,but it gradually tends to be stable in the range of 97.3%-99.7%when the inlet concentration is over this concentration.展开更多
The system energy of H atom occupying different positions in Cr2O3 crystal lattice is calculated by adopting the first-principles calculation method based on density functional theory in this paper. The results indica...The system energy of H atom occupying different positions in Cr2O3 crystal lattice is calculated by adopting the first-principles calculation method based on density functional theory in this paper. The results indicate that the most stable position of H atom in Cr2O3 crystal lattice locates at the bilateral positions of the center of the unoccupied O octahedral interstice. The reason resulting in this situation is analyzed by comparing the change of Cr2O3 lattice distortion and density of states in Cr2O3_H system when H atom locates at different positions in octahedral interstice. The diffusion activation energy of H atom is 0.73 eV,which is determined by seeking the diffusion path and transition state of H atom in Cr2O3 crystal lattice. The effective attempt frequency of H atom in Cr2O3 crystal lattice is also calculated by using molecular dynamics. Combining with diffusion activation energy data,the diffusion coefficient of H atom in Cr2O3 crystal is determined.展开更多
基金Project(50878080)supported by the National Natural Science Foundation of ChinaProject(K0902006-31)supported by the Key Scientific and Technological Special of Changsha City in China
文摘The general behavior of micron-particles in the inner domain of porous ceramic vessel was simulated by computational fluid dynamics software in terms of sampling experimental data.The results show that there is an optimum porosity of 0.32 to get a higher efficiency and lower pressure drop during filtration.According to the results of simulation and experiment,it is evident that lower inlet velocity can maintain lower pressure drop and obtain higher collection efficiency and inlet concentration also has a crucial influence on the collection efficiency.The collection efficiency of equipment increases significantly with the increase of inlet concentration when the inlet concentration is less than 6.3 g/m3,but it gradually tends to be stable in the range of 97.3%-99.7%when the inlet concentration is over this concentration.
基金supported by the National Natural Science Foundation of China (Grant Nos.50771104,50871122)
文摘The system energy of H atom occupying different positions in Cr2O3 crystal lattice is calculated by adopting the first-principles calculation method based on density functional theory in this paper. The results indicate that the most stable position of H atom in Cr2O3 crystal lattice locates at the bilateral positions of the center of the unoccupied O octahedral interstice. The reason resulting in this situation is analyzed by comparing the change of Cr2O3 lattice distortion and density of states in Cr2O3_H system when H atom locates at different positions in octahedral interstice. The diffusion activation energy of H atom is 0.73 eV,which is determined by seeking the diffusion path and transition state of H atom in Cr2O3 crystal lattice. The effective attempt frequency of H atom in Cr2O3 crystal lattice is also calculated by using molecular dynamics. Combining with diffusion activation energy data,the diffusion coefficient of H atom in Cr2O3 crystal is determined.