The objective of this work is to study the gas desorption characteristics of the high-rank intact coal and fractured coal.The gas adsorption,mercury porosimetry and gas desorption experiments were carried out in this ...The objective of this work is to study the gas desorption characteristics of the high-rank intact coal and fractured coal.The gas adsorption,mercury porosimetry and gas desorption experiments were carried out in this study.Then,the theories of thermodynamics,diffusion mechanism and desorption kinetics were used to estimate the gas desorption characteristics.The results of gas adsorption experiments show that the initial isosteric adsorption heat of the intact coal is greater than that of the fractured coal,indicating that the gas molecules desorb more easily from fractured coal than intact coal.Using the mercury porosimetry,we find that the diffusion channels of fractured coal are more developed than those of intact coal.The difficult diffusion form dominates in the intact coal during the gas diffusing,while the easy diffusion form dominates in the fractured coal.The results of gas desorption experiments show that the initial gas desorption volume and velocity of the fractured coal are both greater than those of the intact coal.Using the Fick diffusion law,the study calculates the gas diffusion coefficients of the intact coal and fractured coal.The diffusion coefficients of the fractured coal are 2 times and 10 times greater than those of the intact coal at the time of 0-120 and 0-10 min,respectively.展开更多
The adsorption of dibenzofuran (DBF) on three commercial granular activated carbons (GAC) was investigated to correlate the adsorption equilibrium and kinetics with the morphological characteristics of activated c...The adsorption of dibenzofuran (DBF) on three commercial granular activated carbons (GAC) was investigated to correlate the adsorption equilibrium and kinetics with the morphological characteristics of activated carbons. Breakthrough experiment was conducted to determine the isotherm and kinetics of dibenzofuran on the activated carbons. All-the experiment runs were performed in a fixed bed with a process temperature of 368 K. The effects of adsorbent morphological properties on the kinetics of the adsorption process were studied. The equilibrium data are found satisfactory fitted to the Langmuir isotherm. An intraparticle diffusion model based on the obtained Langmuir isotherm was'developed for predicting the fixed bed adsorption of dibenzofuran. The result indicated that this model fit all the breakthrough curves well. The surface diffusion coefficients of dibenzofuran on the activated carbon are calculated, and a relationship with the microporosity is found. As it was expected, the dibenzofuran molecule finds more kinetic restrictions for the diffusion in those carbons with narrower pore diameter.展开更多
The adsorption of dibenzofuran on three commercial granular activated carbons (ACs) was investigated by dynamic experiment to correlate the adsorption equilibrium and kinetics with the structure of activated carbons.P...The adsorption of dibenzofuran on three commercial granular activated carbons (ACs) was investigated by dynamic experiment to correlate the adsorption equilibrium and kinetics with the structure of activated carbons.Physical properties including surface area, average pore diameter, micropore area and micropore volume of the activated carbons were characterized by N2 adsorption experiment on ASAP2010. To calculate the adsorption parameters, adsorption isotherm data were fitted to the Langmuir equation, and adsorption kinetic data were fitted to the linear driving force (LDF) diffusion model. From the correlation results, it is concluded that the adsorption equilibrium and diffusion coefficient of dibenzofuran on activated carbon are controlled respectively by the total adsorbent surface area and the adsorbent pore diameter.展开更多
The adsorption dynamics for phenol in aqueous solution of the adsorbent based on polystyrene was studied. In order to distinguish with the Boyd quasi-homogeneous model of the inner structure of ion-exchanger, the part...The adsorption dynamics for phenol in aqueous solution of the adsorbent based on polystyrene was studied. In order to distinguish with the Boyd quasi-homogeneous model of the inner structure of ion-exchanger, the particle diffusion model including surface diffusion model and pore diffusion model was suggested which is suitable to the macroporous adsorbent. The diffusiondetermination step of the adsorption process was established and the effective diffusion coefficient was also determined. The influence of surface diffusion and pore diffusion on the particle diffusion rate was investigated qualitatively. All of these were very important to improve the structure of the macroporous adsorbent in order to improve the mass-transfer rate.展开更多
The film diffusion mass-transfer process of adsorption of phenol on macroporous polystyrene resin was investigated in detail In order to revise the Boyd film diffusion kinetics equation, the out-surface structure of t...The film diffusion mass-transfer process of adsorption of phenol on macroporous polystyrene resin was investigated in detail In order to revise the Boyd film diffusion kinetics equation, the out-surface structure of the macroporous resin and that of gel-type ion-exchange resin was compared and the new film diffusion equation was also suggested. These results showed that the film diffusion was influenced by porosity of the macroporous resin greatly, which differed from the film diffusion behavior of ion-exchange resin obviously.展开更多
FT-IR spectrometry, TPD and adsorption isotherms of thiophene on NaY/NiY zeolites were carried out and the diffusion coefficient was obtained by means of its real-time dynamic curves. The loading of thiophene adsorbed...FT-IR spectrometry, TPD and adsorption isotherms of thiophene on NaY/NiY zeolites were carried out and the diffusion coefficient was obtained by means of its real-time dynamic curves. The loading of thiophene adsorbed on the NaY zeolite decreased with an increasing temperature, which was ascribed to the patterns of physical adsorption. Both physical and chemical adsorption phenomena were detected on the NiY zeolite, with the 0 complexation and S-M interaction existing during the chemical adsorption. The loading of thiophene adsorbed on the NiY zeolite at 302 K and 335 K was equal, but it decreased at 373 K. The diffusion coefficient of thiophene on the NaY zeolite decreased when the loading increased to more than 0.02 mmol/g, and on the contrary that of thiophene on the NiY zeolite did not change obviously with the loading adsorbed.展开更多
In this work, an equilibrium-dispersion model was successfully established to describe the breakthrough performance of Ca(Ⅱ) imprinted chitosan (Ca(Ⅱ)-CS) microspheres packed column for metal adsorption, and t...In this work, an equilibrium-dispersion model was successfully established to describe the breakthrough performance of Ca(Ⅱ) imprinted chitosan (Ca(Ⅱ)-CS) microspheres packed column for metal adsorption, and the assumptions of Langmuir isotherms and axial dispersion controlled mass transfer process were confirmed. The axial dispersion coefficient in Ca(Ⅱ)-CS microspheres packed column was found to be almost proportional to the linear velocity and fit for prediction through single breakthrough test. Sensitivity analysis for breakthrough curve indicated the axial dispersion coefficient as well as Langmuir coefficient was sensitive variable for deep removal requirement. The retrieval of the adsorption isotherms of Ca(Ⅱ)-CS microspheres from breakthrough curve was fulfilled by modelling calibration. A strategy based on the correlation between adsorption isotherms and breakthrough performance was further proposed to simplify the column adsorption design using absorbents with small/uniform size and fast adsorption kinetics like Ca(Ⅱ)-CS microspheres to cut down the gap between lab and industry.展开更多
基金provided by the National Basic Research Program of China(No.2011CB201204)the Natural Science Foundation for the Youth of China(Nos.41202118 and 51204173)
文摘The objective of this work is to study the gas desorption characteristics of the high-rank intact coal and fractured coal.The gas adsorption,mercury porosimetry and gas desorption experiments were carried out in this study.Then,the theories of thermodynamics,diffusion mechanism and desorption kinetics were used to estimate the gas desorption characteristics.The results of gas adsorption experiments show that the initial isosteric adsorption heat of the intact coal is greater than that of the fractured coal,indicating that the gas molecules desorb more easily from fractured coal than intact coal.Using the mercury porosimetry,we find that the diffusion channels of fractured coal are more developed than those of intact coal.The difficult diffusion form dominates in the intact coal during the gas diffusing,while the easy diffusion form dominates in the fractured coal.The results of gas desorption experiments show that the initial gas desorption volume and velocity of the fractured coal are both greater than those of the intact coal.Using the Fick diffusion law,the study calculates the gas diffusion coefficients of the intact coal and fractured coal.The diffusion coefficients of the fractured coal are 2 times and 10 times greater than those of the intact coal at the time of 0-120 and 0-10 min,respectively.
基金Supported by the National Natural Science Foundation of China (29936100) and the Natural Science Foundation of Guangdong Province (7010327). The authors would like to thank to Pro. GU0 Haifu in Chemistry and Chemical Engineering department of Zhaoqing University for providing the necessary facilities to conduct part of the experimental work reported in this study.
文摘The adsorption of dibenzofuran (DBF) on three commercial granular activated carbons (GAC) was investigated to correlate the adsorption equilibrium and kinetics with the morphological characteristics of activated carbons. Breakthrough experiment was conducted to determine the isotherm and kinetics of dibenzofuran on the activated carbons. All-the experiment runs were performed in a fixed bed with a process temperature of 368 K. The effects of adsorbent morphological properties on the kinetics of the adsorption process were studied. The equilibrium data are found satisfactory fitted to the Langmuir isotherm. An intraparticle diffusion model based on the obtained Langmuir isotherm was'developed for predicting the fixed bed adsorption of dibenzofuran. The result indicated that this model fit all the breakthrough curves well. The surface diffusion coefficients of dibenzofuran on the activated carbon are calculated, and a relationship with the microporosity is found. As it was expected, the dibenzofuran molecule finds more kinetic restrictions for the diffusion in those carbons with narrower pore diameter.
文摘The adsorption of dibenzofuran on three commercial granular activated carbons (ACs) was investigated by dynamic experiment to correlate the adsorption equilibrium and kinetics with the structure of activated carbons.Physical properties including surface area, average pore diameter, micropore area and micropore volume of the activated carbons were characterized by N2 adsorption experiment on ASAP2010. To calculate the adsorption parameters, adsorption isotherm data were fitted to the Langmuir equation, and adsorption kinetic data were fitted to the linear driving force (LDF) diffusion model. From the correlation results, it is concluded that the adsorption equilibrium and diffusion coefficient of dibenzofuran on activated carbon are controlled respectively by the total adsorbent surface area and the adsorbent pore diameter.
文摘The adsorption dynamics for phenol in aqueous solution of the adsorbent based on polystyrene was studied. In order to distinguish with the Boyd quasi-homogeneous model of the inner structure of ion-exchanger, the particle diffusion model including surface diffusion model and pore diffusion model was suggested which is suitable to the macroporous adsorbent. The diffusiondetermination step of the adsorption process was established and the effective diffusion coefficient was also determined. The influence of surface diffusion and pore diffusion on the particle diffusion rate was investigated qualitatively. All of these were very important to improve the structure of the macroporous adsorbent in order to improve the mass-transfer rate.
文摘The film diffusion mass-transfer process of adsorption of phenol on macroporous polystyrene resin was investigated in detail In order to revise the Boyd film diffusion kinetics equation, the out-surface structure of the macroporous resin and that of gel-type ion-exchange resin was compared and the new film diffusion equation was also suggested. These results showed that the film diffusion was influenced by porosity of the macroporous resin greatly, which differed from the film diffusion behavior of ion-exchange resin obviously.
文摘FT-IR spectrometry, TPD and adsorption isotherms of thiophene on NaY/NiY zeolites were carried out and the diffusion coefficient was obtained by means of its real-time dynamic curves. The loading of thiophene adsorbed on the NaY zeolite decreased with an increasing temperature, which was ascribed to the patterns of physical adsorption. Both physical and chemical adsorption phenomena were detected on the NiY zeolite, with the 0 complexation and S-M interaction existing during the chemical adsorption. The loading of thiophene adsorbed on the NiY zeolite at 302 K and 335 K was equal, but it decreased at 373 K. The diffusion coefficient of thiophene on the NaY zeolite decreased when the loading increased to more than 0.02 mmol/g, and on the contrary that of thiophene on the NiY zeolite did not change obviously with the loading adsorbed.
基金the National Natural Science Foundation of China(2117613621422603)the National Science and Technology Support Program of China(2011BAC06B01)
文摘In this work, an equilibrium-dispersion model was successfully established to describe the breakthrough performance of Ca(Ⅱ) imprinted chitosan (Ca(Ⅱ)-CS) microspheres packed column for metal adsorption, and the assumptions of Langmuir isotherms and axial dispersion controlled mass transfer process were confirmed. The axial dispersion coefficient in Ca(Ⅱ)-CS microspheres packed column was found to be almost proportional to the linear velocity and fit for prediction through single breakthrough test. Sensitivity analysis for breakthrough curve indicated the axial dispersion coefficient as well as Langmuir coefficient was sensitive variable for deep removal requirement. The retrieval of the adsorption isotherms of Ca(Ⅱ)-CS microspheres from breakthrough curve was fulfilled by modelling calibration. A strategy based on the correlation between adsorption isotherms and breakthrough performance was further proposed to simplify the column adsorption design using absorbents with small/uniform size and fast adsorption kinetics like Ca(Ⅱ)-CS microspheres to cut down the gap between lab and industry.