Studies of atmospheric dispersion are essential to both the site selection of a nuclear power plant and the evaluation of the environmental impacts of nuclear operations. Atmospheric stability plays the most important...Studies of atmospheric dispersion are essential to both the site selection of a nuclear power plant and the evaluation of the environmental impacts of nuclear operations. Atmospheric stability plays the most important role in the dispersion of air pollutants. The focus of attention in the present study is the estimation of the degree of stability of the atmosphere for the north coast of Egypt to evaluate the ability of the atmosphere to disperse pollutants. A FORTRAN program (Appendix 1) is presented to determine atmospheric stability using the Pasquill-Tunner Method PTM, which defines the turbulent state of the atmosphere and also reflects upon the dispersion capabilities of the atmosphere at the site. This method used several meteorological factors such as wind speed, insulation, cloud cover height and type. Meteorological data from Matrouh stations in Egypt is applied for a simulated model. The total patterns of stability classification, both monthly and seasonal patterns, are determined, also the stability-wind rose and stability-wind summary are provided. Finally prediction of Iodine surface air concentration is reported as well as the annual effective dose for I- 131 as a case study.展开更多
文摘Studies of atmospheric dispersion are essential to both the site selection of a nuclear power plant and the evaluation of the environmental impacts of nuclear operations. Atmospheric stability plays the most important role in the dispersion of air pollutants. The focus of attention in the present study is the estimation of the degree of stability of the atmosphere for the north coast of Egypt to evaluate the ability of the atmosphere to disperse pollutants. A FORTRAN program (Appendix 1) is presented to determine atmospheric stability using the Pasquill-Tunner Method PTM, which defines the turbulent state of the atmosphere and also reflects upon the dispersion capabilities of the atmosphere at the site. This method used several meteorological factors such as wind speed, insulation, cloud cover height and type. Meteorological data from Matrouh stations in Egypt is applied for a simulated model. The total patterns of stability classification, both monthly and seasonal patterns, are determined, also the stability-wind rose and stability-wind summary are provided. Finally prediction of Iodine surface air concentration is reported as well as the annual effective dose for I- 131 as a case study.