A system of m (≥2) linear convection-diffusion two-point boundary value problems is examined,where the diffusion term in each equation is multiplied by a small parameterεand the equations are coupled through their c...A system of m (≥2) linear convection-diffusion two-point boundary value problems is examined,where the diffusion term in each equation is multiplied by a small parameterεand the equations are coupled through their convective and reactive terms via matrices B and A respectively.This system is in general singularly perturbed. Unlike the case of a single equation,it does not satisfy a conventional maximum princi- ple.Certain hypotheses are placed on the coupling matrices B and A that ensure exis- tence and uniqueness of a solution to the system and also permit boundary layers in the components of this solution at only one endpoint of the domain;these hypotheses can be regarded as a strong form of diagonal dominance of B.This solution is decomposed into a sum of regular and layer components.Bounds are established on these compo- nents and their derivatives to show explicitly their dependence on the small parameterε.Finally,numerical methods consisting of upwinding on piecewise-uniform Shishkin meshes are proved to yield numerical solutions that are essentially first-order conver- gent,uniformly inε,to the true solution in the discrete maximum norm.Numerical results on Shishkin meshes are presented to support these theoretical bounds.展开更多
A boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation; we construct a finite difference scheme on α priori (sequentially) adapted meshes and study its convergence...A boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation; we construct a finite difference scheme on α priori (sequentially) adapted meshes and study its convergence. The scheme on α priori adapted meshes is constructed using a majorant function for the singular component of the discrete solution, which allows us to find α priori a subdomain where the computed solution requires a further improvement. This subdomain is defined by the perturbation parameter ε, the step-size of a uniform mesh in χ, and also by the required accuracy of the discrete solution and the prescribed number of refinement iterations K for improving the solution. To solve the discrete problems aimed at the improvement of the solution, we use uniform meshes on the subdomains. The error of the numerical solution depends weakly on the parameter ε. The scheme converges almost ε-uniformly, precisely, under the condition N^-1 = o (ε^v), where N denotes the number of nodes in the spatial mesh, and the value v = v(K) can be chosen arbitrarily small for suitable K.展开更多
A coupled system of singularly perturbed convection-diffusion equations is considered. The leading term of each equation is multiplied by a small positive parameter, but these parameters may have different magnitudes....A coupled system of singularly perturbed convection-diffusion equations is considered. The leading term of each equation is multiplied by a small positive parameter, but these parameters may have different magnitudes. The solutions to the system have boundary layers that overlap and interact. The structure of these layers is analyzed, and this leads to the construction of a piecewise-uniform mesh that is a variant of the usual Shishkin mesh. On this mesh an upwind difference scheme is proved to be almost first- order accurate, uniformly in both small parameters. We present the results of numerical experiments to confirm our theoretical results.展开更多
This paper is concerned with the asymptotic stability of planar waves in reaction-diffusion system on Rn, where n 2. Under initial perturbation that decays at space infinity, the perturbed solution converges to planar...This paper is concerned with the asymptotic stability of planar waves in reaction-diffusion system on Rn, where n 2. Under initial perturbation that decays at space infinity, the perturbed solution converges to planar waves as t →∞. The convergence is uniform in Rn. Moreover, the stability of planar waves in reaction-diffusion equations with nonlocal delays is also established by transforming the delayed equations into a non-delayed reaction-diffusion system.展开更多
We study the large-time asymptotics of solutions toward the weak rarefaction wave of the quasineutral Euler system for a two-fluid plasma model in the presence of diffusions of velocity and temperature under small per...We study the large-time asymptotics of solutions toward the weak rarefaction wave of the quasineutral Euler system for a two-fluid plasma model in the presence of diffusions of velocity and temperature under small perturbations of initial data and also under an extra assumption θ_i,+/θ_e,+=θ_i,-/θ_e,-≥m_i/2m_e,namely, the ratio of the thermal speeds of ions and electrons at both far fields is not less than one half. Meanwhile,we obtain the global existence of solutions based on energy method.展开更多
As an extension to the derivative-dependent functional variable separation approach, the approximate derivative-dependent functional variable separation approach is proposed, and it is applied to study the generalized...As an extension to the derivative-dependent functional variable separation approach, the approximate derivative-dependent functional variable separation approach is proposed, and it is applied to study the generalized diffusion equations with perturbation. Complete classification of these perturbed equations which admit approximate derivative-dependent functional separable solutions is obtained. As a result, the corresponding approximate derivative-dependent functional separable solutions to some resulting perturbed equations are derived by way of examples.展开更多
文摘A system of m (≥2) linear convection-diffusion two-point boundary value problems is examined,where the diffusion term in each equation is multiplied by a small parameterεand the equations are coupled through their convective and reactive terms via matrices B and A respectively.This system is in general singularly perturbed. Unlike the case of a single equation,it does not satisfy a conventional maximum princi- ple.Certain hypotheses are placed on the coupling matrices B and A that ensure exis- tence and uniqueness of a solution to the system and also permit boundary layers in the components of this solution at only one endpoint of the domain;these hypotheses can be regarded as a strong form of diagonal dominance of B.This solution is decomposed into a sum of regular and layer components.Bounds are established on these compo- nents and their derivatives to show explicitly their dependence on the small parameterε.Finally,numerical methods consisting of upwinding on piecewise-uniform Shishkin meshes are proved to yield numerical solutions that are essentially first-order conver- gent,uniformly inε,to the true solution in the discrete maximum norm.Numerical results on Shishkin meshes are presented to support these theoretical bounds.
文摘A boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation; we construct a finite difference scheme on α priori (sequentially) adapted meshes and study its convergence. The scheme on α priori adapted meshes is constructed using a majorant function for the singular component of the discrete solution, which allows us to find α priori a subdomain where the computed solution requires a further improvement. This subdomain is defined by the perturbation parameter ε, the step-size of a uniform mesh in χ, and also by the required accuracy of the discrete solution and the prescribed number of refinement iterations K for improving the solution. To solve the discrete problems aimed at the improvement of the solution, we use uniform meshes on the subdomains. The error of the numerical solution depends weakly on the parameter ε. The scheme converges almost ε-uniformly, precisely, under the condition N^-1 = o (ε^v), where N denotes the number of nodes in the spatial mesh, and the value v = v(K) can be chosen arbitrarily small for suitable K.
基金This research is supported by the National Natural Science Foundation of China(Grant No. 10301029, 10241003).
文摘A coupled system of singularly perturbed convection-diffusion equations is considered. The leading term of each equation is multiplied by a small positive parameter, but these parameters may have different magnitudes. The solutions to the system have boundary layers that overlap and interact. The structure of these layers is analyzed, and this leads to the construction of a piecewise-uniform mesh that is a variant of the usual Shishkin mesh. On this mesh an upwind difference scheme is proved to be almost first- order accurate, uniformly in both small parameters. We present the results of numerical experiments to confirm our theoretical results.
文摘This paper is concerned with the asymptotic stability of planar waves in reaction-diffusion system on Rn, where n 2. Under initial perturbation that decays at space infinity, the perturbed solution converges to planar waves as t →∞. The convergence is uniform in Rn. Moreover, the stability of planar waves in reaction-diffusion equations with nonlocal delays is also established by transforming the delayed equations into a non-delayed reaction-diffusion system.
基金supported by the General Research Fund from Research Grants Council of Hong Kong(Grant No.400912)National Natural Science Foundation of China(Grant Nos.11101188+1 种基金11471142and 11331005)the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT13066)
文摘We study the large-time asymptotics of solutions toward the weak rarefaction wave of the quasineutral Euler system for a two-fluid plasma model in the presence of diffusions of velocity and temperature under small perturbations of initial data and also under an extra assumption θ_i,+/θ_e,+=θ_i,-/θ_e,-≥m_i/2m_e,namely, the ratio of the thermal speeds of ions and electrons at both far fields is not less than one half. Meanwhile,we obtain the global existence of solutions based on energy method.
基金Supported by the National Natural Science Foundation of China under Grant No.10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.SJ08A05
文摘As an extension to the derivative-dependent functional variable separation approach, the approximate derivative-dependent functional variable separation approach is proposed, and it is applied to study the generalized diffusion equations with perturbation. Complete classification of these perturbed equations which admit approximate derivative-dependent functional separable solutions is obtained. As a result, the corresponding approximate derivative-dependent functional separable solutions to some resulting perturbed equations are derived by way of examples.