期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
钛合金扩散焊微小缺陷弱磁检测试验研究 被引量:7
1
作者 张斌 于润桥 +1 位作者 刘怡 胡博 《中国测试》 CAS 北大核心 2020年第3期6-11,共6页
针对60 mm厚钛合金扩散焊中未焊合和紧贴型微小缺陷,提出一种新的钛合金扩散焊弱磁检测方法。利用基于弱磁原理的固相焊缝检测系统采集试件表面弱磁信号,分析扩散焊不同缺陷的磁信号特征。结果表明:弱磁方法可检测出埋深60 mm,厚度0.02... 针对60 mm厚钛合金扩散焊中未焊合和紧贴型微小缺陷,提出一种新的钛合金扩散焊弱磁检测方法。利用基于弱磁原理的固相焊缝检测系统采集试件表面弱磁信号,分析扩散焊不同缺陷的磁信号特征。结果表明:弱磁方法可检测出埋深60 mm,厚度0.02 mm未焊合缺陷和直径0.01 mm紧贴型缺陷,可根据表面磁感应强度和磁感应强度梯度信号判断缺陷位置。磁异常幅值、磁异常宽度和基于拉依达准则的磁梯度阈值可作为识别缺陷类型的磁信号特征量,可有效判别出钛合金扩散焊中的未焊合和紧贴型微小缺陷。弱磁检测技术在大厚度钛合金扩散焊微小缺陷的无损评估中具有可行性。 展开更多
关键词 弱磁检测 扩散焊缺陷 拉依达准测 磁感应强度
下载PDF
Noise Reduction of Welding Defect Image Based on NSCT and Anisotropic Diffusion 被引量:4
2
作者 吴一全 万红 +1 位作者 叶志龙 刚铁 《Transactions of Tianjin University》 EI CAS 2014年第1期60-65,共6页
In order to reduce noise effectively in the welding defect image and preserve the minutiae information, a noise reduction method of welding defect image based on nonsubsampled contourlet transform(NSCT) and anisotropi... In order to reduce noise effectively in the welding defect image and preserve the minutiae information, a noise reduction method of welding defect image based on nonsubsampled contourlet transform(NSCT) and anisotropic diffusion is proposed. Firstly, an X-ray welding defect image is decomposed by NSCT. Then total variation(TV) model and Catte_PM model are used for the obtained low-pass component and band-pass components, respectively. Finally, the denoised image is synthesized by inverse NSCT. Experimental results show that, compared with the hybrid method of wavelet threshold shrinkage with TV diffusion, the method combining NSCT with P_Laplace diffusion, and the method combining contourlet with TV model and adaptive contrast diffusion, the proposed method has a great improvement in the aspects of subjective visual effect, peak signal-to-noise ratio(PSNR) and mean-square error(MSE). Noise is suppressed more effectively and the minutiae information is preserved better in the image. 展开更多
关键词 welding defect detection noise reduction nonsubsampled contourlet transform total variation model Catte_PM model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部