Scratch test and friction test were performed to evaluate the internal and external interface behaviors of TiAISiN coating, respectively. The critical compressive and shearing stress of coating failure during scratch ...Scratch test and friction test were performed to evaluate the internal and external interface behaviors of TiAISiN coating, respectively. The critical compressive and shearing stress of coating failure during scratch test were calculated and the values are 30.84 MPa and 4.98 MPa respectively. The average friction coefficients of TiAISiN coat- ing against 2Crl2Ni4Mo3VNbN steel are 0.70 (sliding speed 50 m/rain), 0.63 (sliding speed 100 m/min), and 0.81 (sliding speed 150 m/min). The elements diffusion was analyzed by EDS. A1 and Si element of coating material dif- fuse to the steel disc, except Ti element. The oxidation decreases with the increase of sliding speed, but the adhesion increases with the increase of sliding speed. More A1 element diffuses to the steel disc at the high sliding speed, but the diffusion of Si element keeps almost constant at dlfferent sliding speeds.展开更多
The interfacial bonding of Ag-Cu (they are limited soluble) formed by the technology of cold pressure welding was discussed from the point of metallurgic view in this paper. Meanwhile, tensile test and microscopic tes...The interfacial bonding of Ag-Cu (they are limited soluble) formed by the technology of cold pressure welding was discussed from the point of metallurgic view in this paper. Meanwhile, tensile test and microscopic test were adopted for studying the state of interfacial bonding, suggesting that the joint of Ag-Cu has not only strong welding joint but also atomic diffusion on the interface. For Ag-Cu, the interaction of dislocation caused by plastic deformation will cause the strain and the vibration of microconstructer defects, accompanied by emitting energy. The energy increases the atomic action and the amplitude of atomic vibration, and the result is that the atom can diffuse to several lattice parameters deep from interface to inner metals. Therefore, under the condition of chemical potential gradient, the special technique, cold pressure welding rather than basic requirements of diffusion should be taken into account. During the cold pressure welding, plastic deformation plays an important role for it causes the metals′ displacement, crystal defects, further activates the surface atoms. Finally, the fracture of atomic bonding leads to the atomic exchange and diffusion between the new metals′ surfaces.In other words the metals Ag,Cu can achieve solidate bonding by cold pressure welding accompanied by the atomic diffusion. Moreover, theoretical analysis and calculation on the basis of thermodynamics, crystallogy, so- lid physics,etc, have been applied to calculate the amount of atomic diffusion, which has further proved the testing results that joint Ag-Cu has strong bonding strength through the mechanism of atomic diffusion.展开更多
The shear viscosity bound violation in Einstein gravity for anisotropic black branes is discussed, with the aim of constraining the deviation of the shear viscosity-entropy density ratio from the shear viscosity bound...The shear viscosity bound violation in Einstein gravity for anisotropic black branes is discussed, with the aim of constraining the deviation of the shear viscosity-entropy density ratio from the shear viscosity bound using causality and thermodynamics analysis.The results show that no stringent constraints can be imposed. The diffusion bound in anisotropic plaases is also studied. Ultimately, it is concluded that shear viscosity violation always occurs in cases where the equation of motion of the metric fluctuations cannot be written in a form identical to that of the minimally coupled massless scalar fields.展开更多
基金Supported by China Postdoctoral Science Foundation(No. 20110490380 and No. 20110490383)Dongfang Turbine Co, Ltd (No. 2011GZ011)State Key Laboratory of Tribology, Tsinghua University (No. SKLT10A01)
文摘Scratch test and friction test were performed to evaluate the internal and external interface behaviors of TiAISiN coating, respectively. The critical compressive and shearing stress of coating failure during scratch test were calculated and the values are 30.84 MPa and 4.98 MPa respectively. The average friction coefficients of TiAISiN coat- ing against 2Crl2Ni4Mo3VNbN steel are 0.70 (sliding speed 50 m/rain), 0.63 (sliding speed 100 m/min), and 0.81 (sliding speed 150 m/min). The elements diffusion was analyzed by EDS. A1 and Si element of coating material dif- fuse to the steel disc, except Ti element. The oxidation decreases with the increase of sliding speed, but the adhesion increases with the increase of sliding speed. More A1 element diffuses to the steel disc at the high sliding speed, but the diffusion of Si element keeps almost constant at dlfferent sliding speeds.
文摘The interfacial bonding of Ag-Cu (they are limited soluble) formed by the technology of cold pressure welding was discussed from the point of metallurgic view in this paper. Meanwhile, tensile test and microscopic test were adopted for studying the state of interfacial bonding, suggesting that the joint of Ag-Cu has not only strong welding joint but also atomic diffusion on the interface. For Ag-Cu, the interaction of dislocation caused by plastic deformation will cause the strain and the vibration of microconstructer defects, accompanied by emitting energy. The energy increases the atomic action and the amplitude of atomic vibration, and the result is that the atom can diffuse to several lattice parameters deep from interface to inner metals. Therefore, under the condition of chemical potential gradient, the special technique, cold pressure welding rather than basic requirements of diffusion should be taken into account. During the cold pressure welding, plastic deformation plays an important role for it causes the metals′ displacement, crystal defects, further activates the surface atoms. Finally, the fracture of atomic bonding leads to the atomic exchange and diffusion between the new metals′ surfaces.In other words the metals Ag,Cu can achieve solidate bonding by cold pressure welding accompanied by the atomic diffusion. Moreover, theoretical analysis and calculation on the basis of thermodynamics, crystallogy, so- lid physics,etc, have been applied to calculate the amount of atomic diffusion, which has further proved the testing results that joint Ag-Cu has strong bonding strength through the mechanism of atomic diffusion.
基金the National Natural Science Foundation of China(Grant No.11375110)
文摘The shear viscosity bound violation in Einstein gravity for anisotropic black branes is discussed, with the aim of constraining the deviation of the shear viscosity-entropy density ratio from the shear viscosity bound using causality and thermodynamics analysis.The results show that no stringent constraints can be imposed. The diffusion bound in anisotropic plaases is also studied. Ultimately, it is concluded that shear viscosity violation always occurs in cases where the equation of motion of the metric fluctuations cannot be written in a form identical to that of the minimally coupled massless scalar fields.