Grand canonical Monte Carlo and molecular dynamics simulation methods are used to simulate oxygen sorption and diffusion in amorphous poly(lactic acid) (PLA). The simulated solubility coefficient of oxygen is clos...Grand canonical Monte Carlo and molecular dynamics simulation methods are used to simulate oxygen sorption and diffusion in amorphous poly(lactic acid) (PLA). The simulated solubility coefficient of oxygen is close to experimental data obtained from the quartz crystal microbalance but much higher than those from the time-lag method. This discrepancy is explained by using the dual-mode sorption model. It is found that oxygen sorotion in PLA is predominantly Langmuir type controlled, i.e., through the process of filling holes. The time--lag method only takes into account oxygen molecules that participate the diffusion process whereas a large proportion of oxygen molecules trapped in the void have little chance to execute hopping due to the glassy nature of PLA at room temperature. The simulated diffusion coefficient of oxygen is reasonably close to the data obtained from the time-lag method. The solubility coefficient of oxygen decreases linearly with increasing relative humidity while its diffusion coefficient firstly decreases and then increases as a function of relative humidity.展开更多
The Monte Carlo method was employed to simulate diffusion and reaction processes within three-dimensional porous catalyst pellets. The porous pellets used were represented by a Menger sponge and a uniform-pore structu...The Monte Carlo method was employed to simulate diffusion and reaction processes within three-dimensional porous catalyst pellets. The porous pellets used were represented by a Menger sponge and a uniform-pore structure respectively. Results obtained from the fractal pellet showed an intermediate low-slope asymptote in the logarithmic plot of reaction rate and reaction probability. However, the low-slope one did not appear when the reaction occurred within the uniform pellet. Moreover, it was certified that the fractal structure not only generated a new asymptote, but also reduced diffusion resistance of reactants and products.展开更多
A CFD simulation was carried out to investigate the mixing process in a Y-shape micromixer with the software Fluent 6.3. The definition of the "diffusion angle" is proposed to describe the molecular diffusio...A CFD simulation was carried out to investigate the mixing process in a Y-shape micromixer with the software Fluent 6.3. The definition of the "diffusion angle" is proposed to describe the molecular diffusion process associated with the flow at low Reynolds number. The linear relationship between the diffusion angle and the Peclet number(Pe) is determined by both theoretical analysis and numerical simulation. Moreover, the simulation results reveal that the diffusion angle is only related to the Peclet number whilst it is irrelevant to the changes of Re(Reynolds number) and Sc(Schmidt number). The range of Peclet number and Reynolds number for experimental measurement are also suggested as Pe≤10000 and Re≤10.展开更多
基金Supported by Program of New Century Excellent Talents in University (NCET-07-0313), the National Natural Science Foun- dation of China (20706019, 20876052), Guangdong Science Foundation ($2011010002078).
文摘Grand canonical Monte Carlo and molecular dynamics simulation methods are used to simulate oxygen sorption and diffusion in amorphous poly(lactic acid) (PLA). The simulated solubility coefficient of oxygen is close to experimental data obtained from the quartz crystal microbalance but much higher than those from the time-lag method. This discrepancy is explained by using the dual-mode sorption model. It is found that oxygen sorotion in PLA is predominantly Langmuir type controlled, i.e., through the process of filling holes. The time--lag method only takes into account oxygen molecules that participate the diffusion process whereas a large proportion of oxygen molecules trapped in the void have little chance to execute hopping due to the glassy nature of PLA at room temperature. The simulated diffusion coefficient of oxygen is reasonably close to the data obtained from the time-lag method. The solubility coefficient of oxygen decreases linearly with increasing relative humidity while its diffusion coefficient firstly decreases and then increases as a function of relative humidity.
文摘The Monte Carlo method was employed to simulate diffusion and reaction processes within three-dimensional porous catalyst pellets. The porous pellets used were represented by a Menger sponge and a uniform-pore structure respectively. Results obtained from the fractal pellet showed an intermediate low-slope asymptote in the logarithmic plot of reaction rate and reaction probability. However, the low-slope one did not appear when the reaction occurred within the uniform pellet. Moreover, it was certified that the fractal structure not only generated a new asymptote, but also reduced diffusion resistance of reactants and products.
基金Project(51106184)supported by the National Natural Science Foundation of China
文摘A CFD simulation was carried out to investigate the mixing process in a Y-shape micromixer with the software Fluent 6.3. The definition of the "diffusion angle" is proposed to describe the molecular diffusion process associated with the flow at low Reynolds number. The linear relationship between the diffusion angle and the Peclet number(Pe) is determined by both theoretical analysis and numerical simulation. Moreover, the simulation results reveal that the diffusion angle is only related to the Peclet number whilst it is irrelevant to the changes of Re(Reynolds number) and Sc(Schmidt number). The range of Peclet number and Reynolds number for experimental measurement are also suggested as Pe≤10000 and Re≤10.