The observations of grain-boundary segregation of Bi in Cu bicrystals were analyzed. According to equilibrium grain boundary segregation (EGS) model and non-equilibrium grain-boundary segregation (NGS) model, resp...The observations of grain-boundary segregation of Bi in Cu bicrystals were analyzed. According to equilibrium grain boundary segregation (EGS) model and non-equilibrium grain-boundary segregation (NGS) model, respectively, the segregation kinetics of isothermal annealing at 500 °C and that of isochronal annealing for 24 h of Bi in Cu bicrystals were investigated. By qualitative analysis and quantitative analysis, it is concluded that the grain-boundary segregation of Bi agrees well with the theory of NGS. Based on the kinetics model of NGS, some parameters that are useful to predicting and controlling the Bi-induced embrittlement in Cu alloys are calculated as follows:the diffusion coefficient of Bi-vacancy complexes Dc=7.8×10^-5exp[-1.46/(kT)];the apparent diffusion coefficient of Bi atoms Di^A=7.66×10^at+bexp[–1.76/(kT)], where a=8.45×10^-8 and b=-13.37.展开更多
Diffusion behavior of Ni in Zr48Cu36Ag8Al8 metallic glass was investigated in the temperature range of 683-723 K by secondary ion mass spectrum(SIMS) and transmission electron microscope(TEM). The diffusivity of Ni in...Diffusion behavior of Ni in Zr48Cu36Ag8Al8 metallic glass was investigated in the temperature range of 683-723 K by secondary ion mass spectrum(SIMS) and transmission electron microscope(TEM). The diffusivity of Ni in Zr48Cu36Ag8Al8 is reasonably fitted by a single Arrhenius relation with small effective activation energy. The diffusivity of Ni in Zr48Cu36Ag8Al8 is an instantaneous function of annealing time in the supercooled liquid region. In addition, a large number of nano-crystals are detected near the interface of Ni-Zr48Cu36Ag8Al8 diffusion couple, and its width is broader than the Ni diffusion depth determined by SIMS. The results indicate that atomic inter-diffusion is an important factor to promote the formation of nano-crystals within the diffusion zone.展开更多
The large and small sized Cu(solid)/Al(liquid) couples were prepared to investigate the directional growth behavior of primary a(Al) phase during a concentration-gradient-controlled solidification process under ...The large and small sized Cu(solid)/Al(liquid) couples were prepared to investigate the directional growth behavior of primary a(Al) phase during a concentration-gradient-controlled solidification process under various static magnetic fields(SMFs).The results show that in the large couples,the α(Al) dendrites reveal a directional growth character whether without or with the SMF.However,the 12 T magnetic field induces regular growth,consistent deflection and the decrease of secondary arm spacing of the dendrites.In the small couples,the α(Al) dendrites still reveal a directional growth character to some extent with a SMF of ≤5 T.However,an 8.8 T SMF destroys the directional growth and induces severe random deflections of the dendrites.When the SMF increases to 12 T,the a(Al) dendrites become quite regular despite of the consistent deflection.The directional growth arises from the continuous long-range concentration gradient field built in the melt.The morphological modification is mainly related to the suppression of natural convections and the induction of thermoelectric magnetic convection by the SMF.展开更多
The growth kinetics of intermetallic compound layer between molten In-Sn alloy and Cu40Zr44Al8Ag8 bulk metallic glass substrate was examined by solid state isothermal aging at the temperature range between 333 and 393...The growth kinetics of intermetallic compound layer between molten In-Sn alloy and Cu40Zr44Al8Ag8 bulk metallic glass substrate was examined by solid state isothermal aging at the temperature range between 333 and 393 K.The aged samples were characterized by scanning electron microscopy and energy dispersive spectrometry.It is found that the intermetallic compound layer is composed of Zr,Cu and Sn.The layer growth of the intermetallic compound is mainly controlled by a diffusion mechanism over the temperature range and the value of the time exponent is approximately 0.5.The apparent activation energy for the growth of total intermetallic compound layers is 98.35 kJ /mol calculated by the Arrhenius equation.展开更多
WC-6MoxC-0.47Cr3C2-0.28VC binderless carbide was prepared by hot pressing (1700 °C, 20 MPa). The sample was observed and analyzed by scanning electron microscopy, energy dispersive X–ray spectroscopy and X–ra...WC-6MoxC-0.47Cr3C2-0.28VC binderless carbide was prepared by hot pressing (1700 °C, 20 MPa). The sample was observed and analyzed by scanning electron microscopy, energy dispersive X–ray spectroscopy and X–ray diffraction. The results show that during the hot pressing process, W atoms dissolve substantially into the MoxC crystal lattices; whilst, the reverse dissolution of Mo atoms into the WC crystal lattices takes place. Consequently, the main phase and binder phase structure are formed. The phase compositions of the main phase and binder phase are a WC-based solid solution containing Mo and a Mo2C-based solid solution containing W, respectively. The isotropic dissolution and precipitation of W and Mo atoms do not result in substantial carbide coarsening. The mechanism for the densification was discussed.展开更多
A metamaterial was introduced into the cover of a patch antenna and its band structure was analyzed. The metama- terial cover with correct selection of the working frequency increases by 9.14 dB the patch antenna’s d...A metamaterial was introduced into the cover of a patch antenna and its band structure was analyzed. The metama- terial cover with correct selection of the working frequency increases by 9.14 dB the patch antenna’s directivity. The mechanism of metamaterial cover is completely different from that of a photonic bandgap cover. The mechanism of the metamaterial cover, the number of the cover’s layers, and the distance between the layers, were analyzed in detail. The results showed that the metamaterial cover, which works like a lens, could effectively improve the patch antenna’s directivity. The physical reasons for the improvement are also given.展开更多
The formulas for atomic displacements and Hamiltonian of a thin crystal film in phonon occupation number representation are obtained with the aid of Green's function theory. On the basis of these results, the form...The formulas for atomic displacements and Hamiltonian of a thin crystal film in phonon occupation number representation are obtained with the aid of Green's function theory. On the basis of these results, the formulas for thermal expansion coefficients of the thin crystal film are derived with the perturbation theory, and the numerical calculations are carried out. The results show that the thinner films have larger thermal expansion coefficients.展开更多
This paper describes the design of a FeWOx-based oxygen carrier for the chemical partial oxidation of methane(CLPOM).Thermodynamic screening and kinetic analyses both forecast the FeWOx-based oxygen carrier as a promi...This paper describes the design of a FeWOx-based oxygen carrier for the chemical partial oxidation of methane(CLPOM).Thermodynamic screening and kinetic analyses both forecast the FeWOx-based oxygen carrier as a promising candidate for the production of syngas.The total methane conversion and syngas yield can be dramatically increased with this catalyst compared to the case with the unmodified WO3/SiO2,thereby enabling CLPOM with 62%methane conversion,93%CO gas-phase selectivity,94%H2 selectivity,and a 2.4 H2/CO ratio.The catalyst has the advantages of high availability of lattice oxygen to oxidize carbonaceous intermediates in time,together with the formation of an Fe-W alloy to promote the surface reaction.Consequently,it demonstrates excellent catalytic performance with no catalyst deactivation at 900°C and 1 atm.The excellent structural stability plays an essential role in CLPOM.As revealed via XPS and ICP,the phase segregation has not been observed due to the strong interaction between Fe and W,which resulted in the formation of the Fe-W alloy during the reduction processes and the match between the ion oxidation rates of the Fe and W ions in the oxidation stage.The results provide fundamental information on the reaction mechanism of FeWOx/SiO2,and present it as a promising candidate for CLPOM.展开更多
Based on the solid-gas eutectic unidirectional solidification technique and the principle of unidirectional solidification of single-phase alloy, a new method for evaluating the diffusion coefficient of hydrogen in li...Based on the solid-gas eutectic unidirectional solidification technique and the principle of unidirectional solidification of single-phase alloy, a new method for evaluating the diffusion coefficient of hydrogen in liquid metals was proposed. Taking Cu-H2 system for example, the influences of argon partial pressure and superheat degree of melt on the diffusion coefficient of hydrogen in liquid metal were studied and the predicted values were similar to each other. The obtained temperature-dependent equation for diffusion coefficient of hydrogen in liquid copper is comparable with experimental data in literature, which validates the effectiveness of this method. The temperature-dependent equations for diffusion coefficient of hydrogen in liquid Mg, Si and Cu-34.6%Mn alloy were also evaluated by this method, along with the values at the melting point of each metal and alloy.展开更多
Based on the bulk free energy density and the degenerate mobility constructed by the quartic double-well potential function,a phase field model is established to simulate the evolution of intragranular microvoids due ...Based on the bulk free energy density and the degenerate mobility constructed by the quartic double-well potential function,a phase field model is established to simulate the evolution of intragranular microvoids due to surface diffusion in a stress field.The corresponding phase field governing equations are derived.The evolution of elliptical microvoids with different stressesΛ,aspect ratiosβand linewidths hˉis calculated using the mesh adaptation finite element method and the reliability of the procedure is verified.The results show that there exist critical values of the stressΛc,the aspect ratioβc and the linewidth hˉc of intragranular microvoids under equivalent biaxial tensile stress.When Λ≥Λ_(c),β≥β_(c) or h≤h_(c),the elliptical microvoids are instable with an extending crack tip.WhenΛ<Λ_(c),β<β_(c) or hˉ>h_(c),the elliptical microvoids gradually cylindricalize and remain a stable shape.The instability time decreases with increasing the stress or the aspect ratio,while increases with increasing the linewidth.In addition,for the interconnects containing two elliptical voids not far apart,the stress will promote the merging of the voids.展开更多
Dynamical properties of liquid in nano-channels attract much interest because of their applications in engineering and biological systems. The transfer behavior of liquid confined within nanopores differs significantl...Dynamical properties of liquid in nano-channels attract much interest because of their applications in engineering and biological systems. The transfer behavior of liquid confined within nanopores differs significantly from that in the bulk. Based on the simple quasicrystal model of liquid, analytical expressions of self-diffusion coefficient both in bulk and in slit nanopore are derived from the Stokes–Einstein equation and the modified Eyring's equation for viscosity. The local self-diffusion coefficient in different layers of liquid and the global self-diffusion coefficient in the slit nanopore are deduced from these expressions. The influences of confinement by pore walls,pore widths, liquid density, and temperature on the self-diffusion coefficient are investigated. The results indicate that the self-diffusion coefficient in nanopore increases with the pore width and approaches the bulk value as the pore width is sufficiently large. Similar to that in bulk state, the self-diffusion coefficient in nanopore decreases with the increase of density and the decrease of temperature, but these dependences are weaker than that in bulk state and become even weaker as the pore width decreases. This work provides a simple method to capture the physical behavior and to investigate the dynamic properties of liquid in nanopores.展开更多
Transient liquid phase bonding of two dissimilar alloys Al 2024 and Ti?6Al?4V using Cu?22%Zn interlayer was carried out at 510 °C under vacuum of 0.01 Pa for various bonding time. In order to characterize the mic...Transient liquid phase bonding of two dissimilar alloys Al 2024 and Ti?6Al?4V using Cu?22%Zn interlayer was carried out at 510 °C under vacuum of 0.01 Pa for various bonding time. In order to characterize the microstructure evolution in the joint zone, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) were applied. The results show that joint formation is attributed to the solid-state diffusion of Cu and Zn into Ti?6Al?4V and Al 2024 alloys followed by eutectic formation and isothermal solidification along the Cu?Zn/Al 2024 interface. The hardness of the joints at the interface increases with an increase in bonding time which can be attributed to formation of intermetallic compounds such as Al2Cu, TiCu3, Al4.2Cu3.2Zn0.7, Al0.71Zn0.29, Ti2Cu, TiAl3 and TiZn16 in the joint zone. Moreover, shear strength of the joint reaches the highest value of 37 MPa at bonding time of 60 min.展开更多
Dense B;C material was fabricated using spark plasma sintering(SPS), and the densification mechanisms and grain growth kinetics were revealed. The density, hardness, transverse flexure strength and toughness of sample...Dense B;C material was fabricated using spark plasma sintering(SPS), and the densification mechanisms and grain growth kinetics were revealed. The density, hardness, transverse flexure strength and toughness of samples were investigated and the model predictions were confirmed by SEM and TEM experimental observations. Results show that SPSed B;C exhibits two sintering periods: a densification period(1800-2000 °C) and a grain growth period(2100-2200 °C). Based on steady-state creep model, densification proceeds by grain boundary sliding and then dislocation-climb-controlled mechanism. Grain growth mechanism is controlled by grain boundary diffusion at 2100 °C,and then governed by volume or liquid-phase diffusion at 2200 °C.展开更多
The periodic windows in weakly coupled map lattices with both diffusive and gradient couplings are studied. By using the mode analysis method, which reduces the behavior of the coupled systems to a few numbers of inde...The periodic windows in weakly coupled map lattices with both diffusive and gradient couplings are studied. By using the mode analysis method, which reduces the behavior of the coupled systems to a few numbers of independent modes, we theoretically analyze the detailed structures of the periodic windows. We find that the gradient coupling greatly enlarges the width of the periodic windows, compared with the diffusive coupling.展开更多
Spherical Ni(OH)2 particles were prepared by an aqueous solution precipitation route. The structure of spherical Ni(OH)2 was investigated by scanning electron microscopy and transmission electron microscopy and co...Spherical Ni(OH)2 particles were prepared by an aqueous solution precipitation route. The structure of spherical Ni(OH)2 was investigated by scanning electron microscopy and transmission electron microscopy and compared with that of traditional Ni(OH)2. The results show that the spherical nickel hydroxide consists of (Ni(OH)2) spheres with a reticulate structure of platelet-like, which is almost arranged radially and the crystalline grains intervene and connect with each other to form a three-dimensional net. The spherical Ni(OH)2 particle is full of pores, crannies between cleave planes. It is supposed that this structure is beneficial to the structural stability for the spherical particles during the charge/discharge processes and can improve the cycle life of the electrode; the pores and the crannies in spherical particles can shorten the proton diffusion distance and speed its velocity, which may result in that the local polarization is lowered. The electrochemical performances of the spherical Ni(OH)2 are improved by enhancing the conducting properties of the crystalline lattice due to its quick proton diffusion.展开更多
In this study, thin films were produced by magnetron sputtering NC (nanocrystalline) specimens of titanium saturated in hydrogen and were evaluated by layer-by-layer SIMS (secondary ion mass spectrometry) and Rama...In this study, thin films were produced by magnetron sputtering NC (nanocrystalline) specimens of titanium saturated in hydrogen and were evaluated by layer-by-layer SIMS (secondary ion mass spectrometry) and Raman spectroscopy. Due to magnetron sputtering, the chemical composition of the films was non-homogeneous and was variable among layers. Moreover, in the deposition of specimens saturated with hydrogen, hydrogen diffused throughout the depth of the film; diffusion, however, was restricted to the area near the film-substrate interface, affecting less than 50% of the thickness of the film.展开更多
Organic-inorganic 3D halide perovskite materials recently have become one of the major players of hybrid semiconductors for photovoltaic and optoelectronic applications.The diffusion length of charge carriers is one o...Organic-inorganic 3D halide perovskite materials recently have become one of the major players of hybrid semiconductors for photovoltaic and optoelectronic applications.The diffusion length of charge carriers is one of the critical parameters for justifying photovoltaic applications of materials.In this work,we propose a realistic kinetic model in order to fully understand carrier relaxation rate of photoexcited organic perovskites with a negligible exciton formation in photoluminescence lifetime measurements.We find that the extraction of carrier relaxation rate has to be made from multiple fluence-dependent photoluminescence lifetime measurements with global fittings,instead of a traditional single fluence lifetime measurement.To demonstrate the validity of the model,two kinds of p-doped CH3NH3PbI3 single crystals were grown up by intentionally increasing defects.Global fittings of the kinetic model to the two kinds of single crystals yield doping density,trap density,and recombination constants.Our methodology provides a self-contained approach to determine diffusion lengths of organic 3D halide perovskite materials.展开更多
基金Project(51001011)supported by the National Natural Science Foundation of ChinaProject(141043)supported by the Fok Ying-Tong Education Foundation,ChinaProject(FRF-TP-12-042A)supported by the Fundamental Research Funds for the Central Universities,China
文摘The observations of grain-boundary segregation of Bi in Cu bicrystals were analyzed. According to equilibrium grain boundary segregation (EGS) model and non-equilibrium grain-boundary segregation (NGS) model, respectively, the segregation kinetics of isothermal annealing at 500 &#176;C and that of isochronal annealing for 24 h of Bi in Cu bicrystals were investigated. By qualitative analysis and quantitative analysis, it is concluded that the grain-boundary segregation of Bi agrees well with the theory of NGS. Based on the kinetics model of NGS, some parameters that are useful to predicting and controlling the Bi-induced embrittlement in Cu alloys are calculated as follows:the diffusion coefficient of Bi-vacancy complexes Dc=7.8×10^-5exp[-1.46/(kT)];the apparent diffusion coefficient of Bi atoms Di^A=7.66×10^at+bexp[–1.76/(kT)], where a=8.45×10^-8 and b=-13.37.
基金Project(JC20120203)supported by the Fundamental Research Fund of Northwestern Polytechnical University,ChinaProject(B08040)supported by the Program of Introducing Talents of Discipline to Universities,China
文摘Diffusion behavior of Ni in Zr48Cu36Ag8Al8 metallic glass was investigated in the temperature range of 683-723 K by secondary ion mass spectrum(SIMS) and transmission electron microscope(TEM). The diffusivity of Ni in Zr48Cu36Ag8Al8 is reasonably fitted by a single Arrhenius relation with small effective activation energy. The diffusivity of Ni in Zr48Cu36Ag8Al8 is an instantaneous function of annealing time in the supercooled liquid region. In addition, a large number of nano-crystals are detected near the interface of Ni-Zr48Cu36Ag8Al8 diffusion couple, and its width is broader than the Ni diffusion depth determined by SIMS. The results indicate that atomic inter-diffusion is an important factor to promote the formation of nano-crystals within the diffusion zone.
基金Projects(51201029,51071042,51374067)supported by the National Natural Science Foundation of ChinaProjects(N130409002,N130209001)supported by the Research Funds for the Central UniversitiesProject(2012M520637)supported by the China Postdoctoral Science Foundation
文摘The large and small sized Cu(solid)/Al(liquid) couples were prepared to investigate the directional growth behavior of primary a(Al) phase during a concentration-gradient-controlled solidification process under various static magnetic fields(SMFs).The results show that in the large couples,the α(Al) dendrites reveal a directional growth character whether without or with the SMF.However,the 12 T magnetic field induces regular growth,consistent deflection and the decrease of secondary arm spacing of the dendrites.In the small couples,the α(Al) dendrites still reveal a directional growth character to some extent with a SMF of ≤5 T.However,an 8.8 T SMF destroys the directional growth and induces severe random deflections of the dendrites.When the SMF increases to 12 T,the a(Al) dendrites become quite regular despite of the consistent deflection.The directional growth arises from the continuous long-range concentration gradient field built in the melt.The morphological modification is mainly related to the suppression of natural convections and the induction of thermoelectric magnetic convection by the SMF.
基金Project (2011CB606301) supported by the National Basic Research Program of ChinaProject (20212339) supported by the Doctor Startup Foundation Program of Shenyang University,China
文摘The growth kinetics of intermetallic compound layer between molten In-Sn alloy and Cu40Zr44Al8Ag8 bulk metallic glass substrate was examined by solid state isothermal aging at the temperature range between 333 and 393 K.The aged samples were characterized by scanning electron microscopy and energy dispersive spectrometry.It is found that the intermetallic compound layer is composed of Zr,Cu and Sn.The layer growth of the intermetallic compound is mainly controlled by a diffusion mechanism over the temperature range and the value of the time exponent is approximately 0.5.The apparent activation energy for the growth of total intermetallic compound layers is 98.35 kJ /mol calculated by the Arrhenius equation.
基金Project (51074189) supported by the National Natural Science Foundation of ChinaProject (20100162110001) supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject (2011BAE09B02) supported by the National Key Technology R&D Program of China
文摘WC-6MoxC-0.47Cr3C2-0.28VC binderless carbide was prepared by hot pressing (1700 °C, 20 MPa). The sample was observed and analyzed by scanning electron microscopy, energy dispersive X–ray spectroscopy and X–ray diffraction. The results show that during the hot pressing process, W atoms dissolve substantially into the MoxC crystal lattices; whilst, the reverse dissolution of Mo atoms into the WC crystal lattices takes place. Consequently, the main phase and binder phase structure are formed. The phase compositions of the main phase and binder phase are a WC-based solid solution containing Mo and a Mo2C-based solid solution containing W, respectively. The isotropic dissolution and precipitation of W and Mo atoms do not result in substantial carbide coarsening. The mechanism for the densification was discussed.
基金Project (No. 2004CB719802) supported by the National Basic Research Program (973) of China
文摘A metamaterial was introduced into the cover of a patch antenna and its band structure was analyzed. The metama- terial cover with correct selection of the working frequency increases by 9.14 dB the patch antenna’s directivity. The mechanism of metamaterial cover is completely different from that of a photonic bandgap cover. The mechanism of the metamaterial cover, the number of the cover’s layers, and the distance between the layers, were analyzed in detail. The results showed that the metamaterial cover, which works like a lens, could effectively improve the patch antenna’s directivity. The physical reasons for the improvement are also given.
文摘The formulas for atomic displacements and Hamiltonian of a thin crystal film in phonon occupation number representation are obtained with the aid of Green's function theory. On the basis of these results, the formulas for thermal expansion coefficients of the thin crystal film are derived with the perturbation theory, and the numerical calculations are carried out. The results show that the thinner films have larger thermal expansion coefficients.
文摘This paper describes the design of a FeWOx-based oxygen carrier for the chemical partial oxidation of methane(CLPOM).Thermodynamic screening and kinetic analyses both forecast the FeWOx-based oxygen carrier as a promising candidate for the production of syngas.The total methane conversion and syngas yield can be dramatically increased with this catalyst compared to the case with the unmodified WO3/SiO2,thereby enabling CLPOM with 62%methane conversion,93%CO gas-phase selectivity,94%H2 selectivity,and a 2.4 H2/CO ratio.The catalyst has the advantages of high availability of lattice oxygen to oxidize carbonaceous intermediates in time,together with the formation of an Fe-W alloy to promote the surface reaction.Consequently,it demonstrates excellent catalytic performance with no catalyst deactivation at 900°C and 1 atm.The excellent structural stability plays an essential role in CLPOM.As revealed via XPS and ICP,the phase segregation has not been observed due to the strong interaction between Fe and W,which resulted in the formation of the Fe-W alloy during the reduction processes and the match between the ion oxidation rates of the Fe and W ions in the oxidation stage.The results provide fundamental information on the reaction mechanism of FeWOx/SiO2,and present it as a promising candidate for CLPOM.
基金Project(51271096)supported by the National Natural Science Foundation of ChinaProject(NCET-12-0310)supported by Program for New Century Excellent Talents in University,China
文摘Based on the solid-gas eutectic unidirectional solidification technique and the principle of unidirectional solidification of single-phase alloy, a new method for evaluating the diffusion coefficient of hydrogen in liquid metals was proposed. Taking Cu-H2 system for example, the influences of argon partial pressure and superheat degree of melt on the diffusion coefficient of hydrogen in liquid metal were studied and the predicted values were similar to each other. The obtained temperature-dependent equation for diffusion coefficient of hydrogen in liquid copper is comparable with experimental data in literature, which validates the effectiveness of this method. The temperature-dependent equations for diffusion coefficient of hydrogen in liquid Mg, Si and Cu-34.6%Mn alloy were also evaluated by this method, along with the values at the melting point of each metal and alloy.
基金supported by the Natural Science Foundation of Jiangsu Province of China (No. BK20141407)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Based on the bulk free energy density and the degenerate mobility constructed by the quartic double-well potential function,a phase field model is established to simulate the evolution of intragranular microvoids due to surface diffusion in a stress field.The corresponding phase field governing equations are derived.The evolution of elliptical microvoids with different stressesΛ,aspect ratiosβand linewidths hˉis calculated using the mesh adaptation finite element method and the reliability of the procedure is verified.The results show that there exist critical values of the stressΛc,the aspect ratioβc and the linewidth hˉc of intragranular microvoids under equivalent biaxial tensile stress.When Λ≥Λ_(c),β≥β_(c) or h≤h_(c),the elliptical microvoids are instable with an extending crack tip.WhenΛ<Λ_(c),β<β_(c) or hˉ>h_(c),the elliptical microvoids gradually cylindricalize and remain a stable shape.The instability time decreases with increasing the stress or the aspect ratio,while increases with increasing the linewidth.In addition,for the interconnects containing two elliptical voids not far apart,the stress will promote the merging of the voids.
基金Supported by Guangdong Science and Technology Project(2012B050600012)
文摘Dynamical properties of liquid in nano-channels attract much interest because of their applications in engineering and biological systems. The transfer behavior of liquid confined within nanopores differs significantly from that in the bulk. Based on the simple quasicrystal model of liquid, analytical expressions of self-diffusion coefficient both in bulk and in slit nanopore are derived from the Stokes–Einstein equation and the modified Eyring's equation for viscosity. The local self-diffusion coefficient in different layers of liquid and the global self-diffusion coefficient in the slit nanopore are deduced from these expressions. The influences of confinement by pore walls,pore widths, liquid density, and temperature on the self-diffusion coefficient are investigated. The results indicate that the self-diffusion coefficient in nanopore increases with the pore width and approaches the bulk value as the pore width is sufficiently large. Similar to that in bulk state, the self-diffusion coefficient in nanopore decreases with the increase of density and the decrease of temperature, but these dependences are weaker than that in bulk state and become even weaker as the pore width decreases. This work provides a simple method to capture the physical behavior and to investigate the dynamic properties of liquid in nanopores.
文摘Transient liquid phase bonding of two dissimilar alloys Al 2024 and Ti?6Al?4V using Cu?22%Zn interlayer was carried out at 510 °C under vacuum of 0.01 Pa for various bonding time. In order to characterize the microstructure evolution in the joint zone, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) were applied. The results show that joint formation is attributed to the solid-state diffusion of Cu and Zn into Ti?6Al?4V and Al 2024 alloys followed by eutectic formation and isothermal solidification along the Cu?Zn/Al 2024 interface. The hardness of the joints at the interface increases with an increase in bonding time which can be attributed to formation of intermetallic compounds such as Al2Cu, TiCu3, Al4.2Cu3.2Zn0.7, Al0.71Zn0.29, Ti2Cu, TiAl3 and TiZn16 in the joint zone. Moreover, shear strength of the joint reaches the highest value of 37 MPa at bonding time of 60 min.
基金the financial supports from the National Natural Science Foundation of China (No. 51874369)Hunan Provincial Natural Science Foundation, China (No. 2021JJ30856)+1 种基金the China Scholarship Council for financial supports (No. CSC201906370123)the Fundamental Research Funds for the Central Universities of Central South University, China (No. 2020zzts084)。
文摘Dense B;C material was fabricated using spark plasma sintering(SPS), and the densification mechanisms and grain growth kinetics were revealed. The density, hardness, transverse flexure strength and toughness of samples were investigated and the model predictions were confirmed by SEM and TEM experimental observations. Results show that SPSed B;C exhibits two sintering periods: a densification period(1800-2000 °C) and a grain growth period(2100-2200 °C). Based on steady-state creep model, densification proceeds by grain boundary sliding and then dislocation-climb-controlled mechanism. Grain growth mechanism is controlled by grain boundary diffusion at 2100 °C,and then governed by volume or liquid-phase diffusion at 2200 °C.
基金supported by National Natural Science Foundation of China under Grants Nos.10675161,10405018,and 70571053
文摘The periodic windows in weakly coupled map lattices with both diffusive and gradient couplings are studied. By using the mode analysis method, which reduces the behavior of the coupled systems to a few numbers of independent modes, we theoretically analyze the detailed structures of the periodic windows. We find that the gradient coupling greatly enlarges the width of the periodic windows, compared with the diffusive coupling.
基金Project(50134020) supported by the National Natural Science Foundation of China
文摘Spherical Ni(OH)2 particles were prepared by an aqueous solution precipitation route. The structure of spherical Ni(OH)2 was investigated by scanning electron microscopy and transmission electron microscopy and compared with that of traditional Ni(OH)2. The results show that the spherical nickel hydroxide consists of (Ni(OH)2) spheres with a reticulate structure of platelet-like, which is almost arranged radially and the crystalline grains intervene and connect with each other to form a three-dimensional net. The spherical Ni(OH)2 particle is full of pores, crannies between cleave planes. It is supposed that this structure is beneficial to the structural stability for the spherical particles during the charge/discharge processes and can improve the cycle life of the electrode; the pores and the crannies in spherical particles can shorten the proton diffusion distance and speed its velocity, which may result in that the local polarization is lowered. The electrochemical performances of the spherical Ni(OH)2 are improved by enhancing the conducting properties of the crystalline lattice due to its quick proton diffusion.
文摘In this study, thin films were produced by magnetron sputtering NC (nanocrystalline) specimens of titanium saturated in hydrogen and were evaluated by layer-by-layer SIMS (secondary ion mass spectrometry) and Raman spectroscopy. Due to magnetron sputtering, the chemical composition of the films was non-homogeneous and was variable among layers. Moreover, in the deposition of specimens saturated with hydrogen, hydrogen diffused throughout the depth of the film; diffusion, however, was restricted to the area near the film-substrate interface, affecting less than 50% of the thickness of the film.
基金supported by the National Natural Science Foundation of China (No.21773221 and No.21827804)the National Key R&D Program of China (2017YFA0303502)Fundamental Research Funds for the Central Universities of China(WK2340000078).
文摘Organic-inorganic 3D halide perovskite materials recently have become one of the major players of hybrid semiconductors for photovoltaic and optoelectronic applications.The diffusion length of charge carriers is one of the critical parameters for justifying photovoltaic applications of materials.In this work,we propose a realistic kinetic model in order to fully understand carrier relaxation rate of photoexcited organic perovskites with a negligible exciton formation in photoluminescence lifetime measurements.We find that the extraction of carrier relaxation rate has to be made from multiple fluence-dependent photoluminescence lifetime measurements with global fittings,instead of a traditional single fluence lifetime measurement.To demonstrate the validity of the model,two kinds of p-doped CH3NH3PbI3 single crystals were grown up by intentionally increasing defects.Global fittings of the kinetic model to the two kinds of single crystals yield doping density,trap density,and recombination constants.Our methodology provides a self-contained approach to determine diffusion lengths of organic 3D halide perovskite materials.