本文探讨了如何利用同时定位与地图构建(simultaneous localization and mapping, SLAM)技术,通过无人机在井下复杂环境中进行高精度的三维激光扫描与建模。SLAM技术是一种机器人技术,使得设备能够在未知环境中构建地图的同时进行自我定...本文探讨了如何利用同时定位与地图构建(simultaneous localization and mapping, SLAM)技术,通过无人机在井下复杂环境中进行高精度的三维激光扫描与建模。SLAM技术是一种机器人技术,使得设备能够在未知环境中构建地图的同时进行自我定位,从而提高环境感知和导航能力。在井下空区,由于环境复杂且充满未知因素,传统的测绘技术面临极大的挑战,因此采用SLAM技术配合无人机操作可提供一种新的有效解决方案。本文系统阐述了SLAM技术在无人机井下三维激光扫描中的应用,包括无人机的设计、数据收集与分析方法、集成设计及三维建模结果的优化,并通过实地测试验证了该技术的实用性与效果。展开更多
Underground coal mining inevitably results in land surface subsidence.Acquiring information on land surface subsidence is important in the detection of surface change.However,conventional data acquisition techniques c...Underground coal mining inevitably results in land surface subsidence.Acquiring information on land surface subsidence is important in the detection of surface change.However,conventional data acquisition techniques cannot always retrieve information on whole subsidence area.This study focuses on the reconstruction of a digital elevation model(DEM) with terrestrial laser scanning(TLS) point cloud data.Firstly,the methodology of the DEM with terrestrial 3-dimensional laser scanning is introduced.Then,a DEM modeling approach that involves the application of curved non-uniform rational B-splines(NURBS) surface is put forward.Finally,the performance of the DEM modeling approach with different surface inverse methods is demonstrated.The results indicate that the DEM based on the point cloud data and curved NURBS surface can achieve satisfactory accuracy.In addition,the performance of the hyperbolic paraboloid appears to be better than that of the elliptic paraboloid.The reconstructed DEM is continuous and can easily be integrated into other programs.Such features are of great importance in monitoring dynamic ground surface subsidence.展开更多
This paper discusses the methodological specialty of the theoretical investigation in the nanotechnology. In the nanotechnoscience, on the one hand, similar with the classical natural science are created explanatory s...This paper discusses the methodological specialty of the theoretical investigation in the nanotechnology. In the nanotechnoscience, on the one hand, similar with the classical natural science are created explanatory schemes of the natural phenomena and formulated predictions of the course of the definite natural events on the basis of mathematics and experimental data, and on the other, as in the engineering sciences are constructed not only the projects of the new experimental situations but also structural schemes of the new nanosystem unknown in nature and technology. The operation of nanotheory is realized by the iteration method. At first a special engineering problem is formulated. Then it is represented in the form of the structural scheme of the nanosystem which is transformed into the idea about the natural process reflecting its performance. To calculate and mathematically model this process a functional scheme is constructed. Consequently, the engineering problem is reformulated into a scientific one and then into a mathematical problem solved by the deductive method. This path from the bottom to the top represents the analysis of schemes (the bottom up approach). The way in the opposite direction--the synthesis of schemes (the top down approach)--makes it possible to synthesize the ideal model of a new nanosystem from idealized structural elements, according to the appropriate rules of deductive transformation, to calculate basic parameters of the nanosystem and simulate its function. Nanotechnology is at the same time a field of scientific knowledge and a sphere of engineering activity, in other words--nanotechnoscience--similar with systems engineering as the analysis and design of large-scale, complex, man-machine systems, but now as micro- and nanosystems. Scanning tunneling microscope in the nanoexperiment is not only an arrangement of scientific investigation but also at the same time a facility to fabricate the electrically conducting bridges between an electrode and the selected nanotubes and computer modeling and the design of different artifacts.展开更多
As a general format of the image,bitmap(BMP)image has wide applications,and consequently it is an important part of image processing.By segmenting the bitmap and combining the three-dimesional(3D)model of the discrete...As a general format of the image,bitmap(BMP)image has wide applications,and consequently it is an important part of image processing.By segmenting the bitmap and combining the three-dimesional(3D)model of the discrete algorithm with the scanning line compensation algorithm,a mathematical model is built.According to the topological relations between several control points on the model surface,the surface of the model is discretized,and a planar triangle sequence is used to describe 3D objects.Finally,the bitmap is enlarged by combining the borrowing compensation based on 3D modeling principle of discrete algorithm with the scanning line compensation algorithm of binary lattice image,thus getting a relatively clear enlarged BMP image.展开更多
文摘本文探讨了如何利用同时定位与地图构建(simultaneous localization and mapping, SLAM)技术,通过无人机在井下复杂环境中进行高精度的三维激光扫描与建模。SLAM技术是一种机器人技术,使得设备能够在未知环境中构建地图的同时进行自我定位,从而提高环境感知和导航能力。在井下空区,由于环境复杂且充满未知因素,传统的测绘技术面临极大的挑战,因此采用SLAM技术配合无人机操作可提供一种新的有效解决方案。本文系统阐述了SLAM技术在无人机井下三维激光扫描中的应用,包括无人机的设计、数据收集与分析方法、集成设计及三维建模结果的优化,并通过实地测试验证了该技术的实用性与效果。
基金Project(51174206)supported by the National Natural Science Foundation of ChinaProject(2014ZDPY29)supported by the Fundamental Research Funds for the Central UniversitiesProject(SZBF 2011-6-B35)supported by the Priority Academic Program Development of Higher Education Institutions(PAPD)of Jiangsu Province,China
文摘Underground coal mining inevitably results in land surface subsidence.Acquiring information on land surface subsidence is important in the detection of surface change.However,conventional data acquisition techniques cannot always retrieve information on whole subsidence area.This study focuses on the reconstruction of a digital elevation model(DEM) with terrestrial laser scanning(TLS) point cloud data.Firstly,the methodology of the DEM with terrestrial 3-dimensional laser scanning is introduced.Then,a DEM modeling approach that involves the application of curved non-uniform rational B-splines(NURBS) surface is put forward.Finally,the performance of the DEM modeling approach with different surface inverse methods is demonstrated.The results indicate that the DEM based on the point cloud data and curved NURBS surface can achieve satisfactory accuracy.In addition,the performance of the hyperbolic paraboloid appears to be better than that of the elliptic paraboloid.The reconstructed DEM is continuous and can easily be integrated into other programs.Such features are of great importance in monitoring dynamic ground surface subsidence.
文摘This paper discusses the methodological specialty of the theoretical investigation in the nanotechnology. In the nanotechnoscience, on the one hand, similar with the classical natural science are created explanatory schemes of the natural phenomena and formulated predictions of the course of the definite natural events on the basis of mathematics and experimental data, and on the other, as in the engineering sciences are constructed not only the projects of the new experimental situations but also structural schemes of the new nanosystem unknown in nature and technology. The operation of nanotheory is realized by the iteration method. At first a special engineering problem is formulated. Then it is represented in the form of the structural scheme of the nanosystem which is transformed into the idea about the natural process reflecting its performance. To calculate and mathematically model this process a functional scheme is constructed. Consequently, the engineering problem is reformulated into a scientific one and then into a mathematical problem solved by the deductive method. This path from the bottom to the top represents the analysis of schemes (the bottom up approach). The way in the opposite direction--the synthesis of schemes (the top down approach)--makes it possible to synthesize the ideal model of a new nanosystem from idealized structural elements, according to the appropriate rules of deductive transformation, to calculate basic parameters of the nanosystem and simulate its function. Nanotechnology is at the same time a field of scientific knowledge and a sphere of engineering activity, in other words--nanotechnoscience--similar with systems engineering as the analysis and design of large-scale, complex, man-machine systems, but now as micro- and nanosystems. Scanning tunneling microscope in the nanoexperiment is not only an arrangement of scientific investigation but also at the same time a facility to fabricate the electrically conducting bridges between an electrode and the selected nanotubes and computer modeling and the design of different artifacts.
基金National Natural Science Foundation of China(Nos.61162016,61562057)Natural Science Foundation of Gansu Province(No.18JR3RA124)+1 种基金Science and Technology Program Project of Gansu Province(Nos.18JR3RA104,1504FKCA038)Science and Technology Project of Gansu Education Department(No.2017D-08)
文摘As a general format of the image,bitmap(BMP)image has wide applications,and consequently it is an important part of image processing.By segmenting the bitmap and combining the three-dimesional(3D)model of the discrete algorithm with the scanning line compensation algorithm,a mathematical model is built.According to the topological relations between several control points on the model surface,the surface of the model is discretized,and a planar triangle sequence is used to describe 3D objects.Finally,the bitmap is enlarged by combining the borrowing compensation based on 3D modeling principle of discrete algorithm with the scanning line compensation algorithm of binary lattice image,thus getting a relatively clear enlarged BMP image.