In order to study reasonable sintering technological parameters and appropriate copper powder size range of micro heat pipe (MHP) with the sintered wick, the forming principle of copper powders in wicks and MHP's ...In order to study reasonable sintering technological parameters and appropriate copper powder size range of micro heat pipe (MHP) with the sintered wick, the forming principle of copper powders in wicks and MHP's heat transfer capabilities were first analyzed, then copper powders with different cell sizes and dispersions were sintered in RXL-12-11 resistance furnace under the protection of the hydrogen at different sintering temperatures for different durations of sintering time, and finally the sintered wicks' scanning electron microscope (SEM) images and their heat transfer capabilities were analyzed. The results indicate that the wick sintered with copper powders of larger cell size or smaller size range has better sintering properties and larger heat transfer capabilities; and that the increase of either sintering temperatures or sintering time also helps to improve the wick's sintering properties and heat transfer capabilities, and the former affects more obviously than the latter. Considering both its manufacturing cost and performance requirements, it is recommended that copper powders with the size range of 140-170 μm are sintered at 900-950℃ for 30-60 min in practical manufacturing. In addition, two approaches to improve wick's porosity are also proposed through theoretical analysis, which suggests that the larger the wick's porosity, the better the heat transfer capabilities of the MHP.展开更多
The effects of two kinds of heat treatments T4(solution treatment) and T6(aging treatment) on the corrosion behaviors of Mg-3Zn magnesium alloy were studied by electrochemical measurements and scanning electron micros...The effects of two kinds of heat treatments T4(solution treatment) and T6(aging treatment) on the corrosion behaviors of Mg-3Zn magnesium alloy were studied by electrochemical measurements and scanning electron microscopy(SEM) .It is found that zinc element enriches along grain boundaries to exhibit a network microstructure for both T4-and T6-treated alloy.For T6 treatment,larger MgZn particles form mainly on grain boundary and fine MgZn particles precipitate on matrix.Compared with cast alloy,T4 treatment could decrease the amounts of MgZn particles,and decrease the zinc content of zinc-rich net-segregation.Electrochemical measurements show that T4 treatment increases the corrosion resistance while T6 treatment decreases the corrosion resistance of Mn-3Zn alloy.展开更多
A facile and practical route was introduced to prepare LiFePO4/C cathode material with nano-sized primary particles and excellent electrochemical performance. LiH2PO4 was synthesized by using H3PO4 and LiOH as raw mat...A facile and practical route was introduced to prepare LiFePO4/C cathode material with nano-sized primary particles and excellent electrochemical performance. LiH2PO4 was synthesized by using H3PO4 and LiOH as raw materials. Then, as-prepared LiH2PO4, reduced iron powder andα-D-glucose were ball-milled, dried and sin-tered to prepare LiFePO4/C. X-ray diffractometry was used to characterize LiH2PO4, ball-milled product and LiFePO4/C. Differential scanning calorimeter-thermo gravimetric analysis was applied to investigate possible reac-tions in sintering and find suitable temperature for LiFePO4 formation. Scanning electron microscopy was em-ployed for the morphology of LiFePO4/C. As-prepared LiH2PO4 is characterized to be in P21cn(33) space group, which reacts with reduced iron powder to form Li3PO4, Fe3(PO4)2 and H2 in ball-milling and sintering. The appro-priate temperature for LiFePO4/C synthesis is 541.3-976.7 ℃. LiFePO4/C prepared at 700 ℃ presents nano-sized primary particles forming aggregates. Charge-discharge examination indicates that as-prepared LiFePO4/C displays appreciable discharge capacities of 145 and 131 mA·h·g^-1 at 0.1 and 1 C respectively and excellent discharge ca-pacity retention.展开更多
The effects of alkali oxides (Na2O and K2O addition on both the sintering behavior and dielectric properties of Ca-AI-B-Si-O glass/Al2O3 composites were investigated by Fourier transform infrared spectroscopy (FTIR...The effects of alkali oxides (Na2O and K2O addition on both the sintering behavior and dielectric properties of Ca-AI-B-Si-O glass/Al2O3 composites were investigated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results show that the increasing amount of alkali oxides in the glass causes the decrease of [SiO4], which results in the decrease of the continuity of glass network, and leads to the decrease of the softening temperature Tf of the samples and the increasing trend of crystallization. And that deduces corresponding rise of densification, dielectric constant, dielectric loss of the low temperature co-fired ceramic (LTCC) materials and the decrease of its thermal conductivity. By contrast, the borosilicate glass/A1203 composites with 1.5% (mass fraction) alkali oxides sintered at 875 ℃ for 30 rain exhibit better properties of a bulk density of 2.79 g/cm3, a porosity of 0.48%, a 2 value of 2.28 W/(m.K), a er value of 7.82 and a tand value of 9.1 × 10-4 (measured at 10 MHz).展开更多
The microstructure and tensile properties of the Mg-1.0%Sn-xY(x=1.5%,3.0%,3.5%,atom fraction)alloys extruded indirectly at 350℃ were investigated by means of optical microscopy,scanning electron microscopy and tensil...The microstructure and tensile properties of the Mg-1.0%Sn-xY(x=1.5%,3.0%,3.5%,atom fraction)alloys extruded indirectly at 350℃ were investigated by means of optical microscopy,scanning electron microscopy and tensile test.The mean grain sizes ofα-Mg matrix in the three extruded alloys are 6,8 and 12μm,respectively,slightly increasing with the addition of Y. The relationship between microstructure and strength was discussed in detail.The results show that the addition of Y has little effect on the grain refinement of the as-extruded Mg-Sn based alloys above.The only MgSnY phase is detected in the Mg-Sn-1.5%Y alloy, and the Sn3Y5 phase in the Mg-Sn-3.5%Y alloy,whereas both of them simultaneously exist in the Mg-Sn-3.0%Y alloy.The particle shape of MgSnY and Sn3Y5 phase,inherited from the solidification,has little change before and after hot extrusion.Mg-Sn-3.0%Y alloy has the highest ultimate tensile strength(UTS),305 MPa,by over 50%compared with that of the other two alloys.展开更多
Gelatins extracted from two edible insects Aspongubus viduatus (melon bug) and Agonoscelis pubescens (sorghum bug) were studied. The two insects showed 27.0 and 28.2% crude protein, respectively. Extraction of gel...Gelatins extracted from two edible insects Aspongubus viduatus (melon bug) and Agonoscelis pubescens (sorghum bug) were studied. The two insects showed 27.0 and 28.2% crude protein, respectively. Extraction of gelatin using hot water gave high yield followed by mild acid and distilled water extraction, respectively. SDS-PAGE pattern showed low molecular weight chains, and the two gelatins contained protein with molecular weight of 40 kDa as main component. The differential scanning calorimetry thermograms results confirm no difference between extraction methods concerning the extracted gelatin quality. FTIR spectra of melon and sorghum bug gelatins were similar and the absorption bands were situated in more than 6 bands in melon bug gelatin and only 6 bands in sorghum bug gelatin. Amide II bands of gelatins from both melon and sorghum bug appeared at around 1554 cm^-1, while Amide I bands (1734-1632 cmt) appeared only in melon bug method 2 (MB2) and melon bug method3 (MB3). Microstructures of the insect gelatin examined with the scanning electron microscope showed that melon bug exhibited the finest gelatin network with very small voids. Melon bug gelatin showed finer structure with smaller protein strands and voids than sorghum bug gelatin.展开更多
The microstructure evolution of an extruded Mg-8.57Gd-3.72Y-0.54Zr (mass fraction, %, GW94) alloy during reheating into the semisolid state was investigated using optical microscopy (OM), scanning electron microsc...The microstructure evolution of an extruded Mg-8.57Gd-3.72Y-0.54Zr (mass fraction, %, GW94) alloy during reheating into the semisolid state was investigated using optical microscopy (OM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). Typical semisolid microstructure with globular solid particles distributed in the liquid matrix is obtained over 600 ℃. The solid content of (Gd+Y) in the primary a-Mg particles decreases with increasing the semisolid temperature. With the prolongation of isothermal holding time, the liquid fraction does not change significantly, while the grains grow up and spheroidize. Three methods used to determine the liquid fraction as a function of temperature, namely quantitative metallography on quenched microstructures, cooling curve thermal analysis, and thermodynamic calculations were further compared.展开更多
The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments...The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments. The microstructures, phases, residual stresses and retained austenite content of 1Cr5 Mo steel welding joint before and after LHT were analyzed with optical microscope and X-ray diffraction, respectively. The cracking morphologies and chemical compositions of corrosion products after salt spray corrosion were analyzed with field emission scanning electron microscopy(FESEM) and energy disperse spectroscopy(EDS), respectively, the polarization curves were measured on a PS-268 A type electrochemical workstation, and the mechanism of corrosion resistance by LHT was investigated as well. The results show that the passive film of original sample is destroyed owing to the corrosive media penetrating into the subsurface, resulting in the redox reaction. The content of residual austenite in the surface and the self-corrosion potential are increased by LHT, which is contributed to improving the capability of salt spray corrosion resistance.展开更多
Hot stamping 22MnB5 steel plate with ultra-high strength has been widely used for body structural members in consideration of automobile safety and lightweight.This paper presents a verification program of simulating ...Hot stamping 22MnB5 steel plate with ultra-high strength has been widely used for body structural members in consideration of automobile safety and lightweight.This paper presents a verification program of simulating and testing pole impact in order to verify if the front crossbeam reinforcement assembly can meet the design requirements,reduce the overall vehicle simulation and test cost and shorten the operation period.In the same condition,the simulation proved conforming to the design requirements;however,the bumper cracked at the impacting point in the course of pole impact test.The analysis of the crack by optical microscope,Vickers and scanning electron microscope indicates that mixture of ferrite,bainite and martensite was produced in the weld heat-affected zone of the 340/590DP tow hook holder and the 22MnB5 front crossbeam;therefore,their hardness and mechanical property were reduced obviously,so that they fractured when impacted.No welding process with continuous weld but spot welding or other bonding method may be employed for the reason that the capacity of the 22MnB5 steel plate in the weld heat-affected zone was reduced obviously.展开更多
Perovskite-type La0.8Sr0.2MnO3 was prepared by stearic acid gel combustion method.The obtained powders were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),scaning electron micro...Perovskite-type La0.8Sr0.2MnO3 was prepared by stearic acid gel combustion method.The obtained powders were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),scaning electron micrograph(SEM)and X-ray photoelectron spectroscopy(XPS)techniques.The catalytic activity of La0.8Sr0.2MnO3 was investigated on thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)by thermal gravity-differential scanning calorimetry(TG-DSC)techniques.The experimental results show that La0.8Sr0.2MnO3 is an effective catalyst for HMX thermal decomposition.The surface-adsorbed species such as H2O,OH - and adsorbed oxygen(Oad)could result in an advance in the onset temperature of HMX thermal decomposition.The mixture system of Mn 3+ and Mn 4+ ions and lattice oxygen could play key roles for the increase of the decomposition heat of HMX because these exothermic reactions could be catalyzed by La0.8Sr0.2MnO3 between CO and NOx(from the thermal decomposition of HMX)and the oxidation reaction of CO.According to the previous researches and our results,perovskite-type La0.8Sr0.2MnO3 may be used as a novel catalyst or modifier for nitrate ester plasticized polyether(NEPE)propellant.展开更多
The galvanic corrosion behavior of metal-matrix composite plain carbon steel/boron carbide (B4C) in 3.5% NaCl solution was studied. The composite was locally produced as a weld band on carbon steel by means of the g...The galvanic corrosion behavior of metal-matrix composite plain carbon steel/boron carbide (B4C) in 3.5% NaCl solution was studied. The composite was locally produced as a weld band on carbon steel by means of the gas tungsten arc welding process and using nickel as the wetting agent. Samples from the weld band, heat-affected zone and parent metal region were extracted precisely and DC/AC electrochemical tests in combination with techniques such as scanning electron microcopy and energy dispersive spectrometry were conducted. The results of the electrochemical tests show that the corrosion resistance of the parent metal sample is higher than that of the welded composite and the HAZ samples. However, as the corrosion potential (Eco^r) of the parent metal is more positive than other two samples, this becomes the cathode in galvanic couples with two other samples. On the other hand, the weld composite sample is also cathodic due to its more positive Ecorr compared to HAZ sample. This means that the HAZ can be particularly at risk of preferential dissolution. The approach can be used in specific areas on plain carbon steel to locally increase hardness and resistance to abrasion and reduce manufacturing costs.展开更多
In order to develop the applications of ore tailings, the glass ceramics were prepared by using a conventional melting-quenching-sintering process. The phase component, microstructures, magnetic properties and thermal...In order to develop the applications of ore tailings, the glass ceramics were prepared by using a conventional melting-quenching-sintering process. The phase component, microstructures, magnetic properties and thermal conductivities of the prepared glass ceramics were investigated by using X-ray diffractometer, scanning electron microscopy, vibrating sample magnetometer and thermophysical properties tester, respectively. The results show that orthorhombic olivine-type phase and triclinic sunstone-type phase formed when the glass was annealed at 700 oC, the concentration of olivine-type and sunstone-type phases decreased, the spinel-type cubic phase occurred and the amount increased when the annealing temperatures increased. The magnetic properties from the cubic spinel ferrites were detected in the glass ceramics, and the related saturation magnetization increased with the annealing temperature increasing. The porous glass ceramics with magnetic property showed much lower thermal conductivity, compared with the non-magnetic porous glass-ceramic and the dense glass-ceramics.展开更多
The thermal decomposition process of basic magnesium carbonate was investigated. Firstly, Basic magnesium carbonate was prepared from magnesite, and the characteristics of the product were detected by X-ray diffracti...The thermal decomposition process of basic magnesium carbonate was investigated. Firstly, Basic magnesium carbonate was prepared from magnesite, and the characteristics of the product were detected by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Subsequently, the thermal decomposition process of basic magnesium carbonate in air was studied by thermogravimetry-differential thermogravimetry (TG-DTG). The results of XRD confirm that the chemical composition of basic magnesium carbonate is 4MgCO3·Mg(OH)2·4H2O. And the SEM images show that the sample is in sheet structure, with a diameter of 0.1-1 μm. The TG-DTG results demonstrate that there are two steps in the thermal decomposition process of basic magnesium carbonate. The apparent activation energies (E) were calculated by Flyrm-Wall-Ozawa method. It is obtained from Coats-Redfem's equation and Malek method that the mechanism functions of the two decomposition stages are D3 and A1.5, respectively. And then, the kinetic equations of the two steps were deduced as well.展开更多
We report the synthesis ofZnO nanowires grown on glass by spin coating and using a commercial microwave oven. 10 mM solutions of zinc acetate dehydrate and 12propanol were spin coated on glass at 2000 rpm for 60 s. A ...We report the synthesis ofZnO nanowires grown on glass by spin coating and using a commercial microwave oven. 10 mM solutions of zinc acetate dehydrate and 12propanol were spin coated on glass at 2000 rpm for 60 s. A seed layer was obtained after three layers of spin coating. Vertical ZnO nanowires were then grown by dipping the substrate in an equimolar solution of zinc nitrate hexahydrate and hexamethylenetetramine subsequently, films were heated with a commercially microwave oven at different power settings (140, 350 and 700 W). The ZnO nanowires were characterized optically and morphologically. Scanning electron microscopy analysis showed that the size of ZnO nanowires was 50 nm in diameter and 500 nm in length. XRD patterns and IR spectra revealed the presence of Zn(OH)2 on the films, when low power in the microwave oven was utilized. The ZnO nanowires bandgap energy was obtained from optical transmission spectra.展开更多
β-Sialon/ZrN bonded corundum composites were synthesized using fused white corundum,alumina micro powder,zircon and carbon black by nitridation reaction sintering process. Phase composition and microstructure of the ...β-Sialon/ZrN bonded corundum composites were synthesized using fused white corundum,alumina micro powder,zircon and carbon black by nitridation reaction sintering process. Phase composition and microstructure of the synthesized composites were investigated by X-ray powder diffraction and scanning electronic microscope,and the formation process of the composites was discussed. The results show that the composites with different compositions can be obtained by controlling the heating temperature and contents of zircon and carbon black. The proper temperature to synthesize the composites is 1773 K.展开更多
TRIP590 advanced high strength steel sheets were heated by laser with different powers.Changes of the microstructure and the hardness of TRIP590 steel under laser heating with different powers were investigated by met...TRIP590 advanced high strength steel sheets were heated by laser with different powers.Changes of the microstructure and the hardness of TRIP590 steel under laser heating with different powers were investigated by metallographic microscope,scanning electron microscope,and hardness tester.The purpose was to study the effect of laser power on microstructure and hardness of TRIP590 steel.It is shown that the power of laser plays an important role on the microstructure and hardness of heated steel sheets.The results are helpful to determine suitable power for the laser auxiliary forming of Trip590 steel in order to obtain uniform microstructure and high hardness.展开更多
Micaceous iron oxide (MIO) with a hexagonal flaky shape was prepared by hydrothermal method. The ferric hydroxide used as precursor was obtained by an acidic leaching solution of pyrite cinders reacting with ammonia...Micaceous iron oxide (MIO) with a hexagonal flaky shape was prepared by hydrothermal method. The ferric hydroxide used as precursor was obtained by an acidic leaching solution of pyrite cinders reacting with ammonia solution. The optimal experimental conditions for preparing micaceous iron oxide were investigated by orthogonal experiments. Micaceous iron oxide can be successfully prepared when optimal parameters of total iron concentration of 2.0 mol/L, pH value of 8, n(Fe2+)/n(Fe3+) of 0.1, mass of seed crystal of 1 g, reaction temperature of 260 ℃ and reaction time of 30 min are applied. X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffractometry (SAEM) were adopted to characterize the hydrothermal products prepared under optimal conditions. The results indicate that highly crystallized α-Fe2O3 hexagonal flakes, about 1.0-1.5 μm in diameter and 0.1 μm in thickness, are prepared. Furthermore, the quality of micaceous iron oxide prepared can meet the required characteristics of micaceous iron oxide pigments for paints (ISO 10601--2007).展开更多
Al-doped ZnO (ZAO) films were successfully deposited on the surface of common glasses by using low-temperature hydrothermal approach. In the reaction solution, the molar ratio of Al3+ to Zn2+ was 1∶100, the annealing...Al-doped ZnO (ZAO) films were successfully deposited on the surface of common glasses by using low-temperature hydrothermal approach. In the reaction solution, the molar ratio of Al3+ to Zn2+ was 1∶100, the annealing temperature and time were 200 ℃ and 2-6 h, respectively. The structure of the thin films was identified by X-ray diffraction (XRD), the surface morphology and thickness of the thin films were observed by scanning electron microscopy (SEM), and the electrical performance of the thin films was measured by four-point probes. It was shown that the films with an average particle size of 27.53 nm had a preferential orientation along (002), Al3+ had replaced the position of Zn2+ in the lattice without forming the Al2O3 phase and its thickness was 20-25 μm. With the increased annealing time, the intensity of diffraction peaks was decreased, the film exhibited irregular surface morphology gradually, and the resistivity of ZAO films was increased. The lowest resistivity obtained in this study was 3.45×10-5Ω·cm.展开更多
A Ti interlayer with thickness about 300 nm was sputtered on Cu microchannels, followed by an ultrasonic seeding with nanodiamond powders. Adherent diamond film with crystalline grains close to thermal equilibrium sha...A Ti interlayer with thickness about 300 nm was sputtered on Cu microchannels, followed by an ultrasonic seeding with nanodiamond powders. Adherent diamond film with crystalline grains close to thermal equilibrium shape was tightly deposited by hot-filament chemical vapor deposition(HF-CVD). The nucleation and growth of diamond were investigated with micro-Raman spectroscope and field emission scanning electron microscope(FE-SEM) with energy dispersive X-ray detector(EDX). Results show that the nucleation density is found to be up to 1010 cm-2. The enhancement of the nucleation kinetics can be attributed to the nanometer rough Ti interlayer surface. An improved absorption of nanodiamond particles is found, which act as starting points for the diamond nucleation during HF-CVD process. Furthermore, finite element simulation was conducted to understand the thermal management properties of prepared diamond/Cu microchannel heat sink.展开更多
基金Key Project(50436010, U0834002) supported by the National Natural Science Foundation of ChinaProjects(50675070, 50705031) supported by the National Natural Science Foundation of China+1 种基金Project(8151064101000058) supported by the Natural Science Foundation of Guangdong Province,ChinaProject(E200909) supported by the Natural Science Foundation of Heilongjiang Province, China
文摘In order to study reasonable sintering technological parameters and appropriate copper powder size range of micro heat pipe (MHP) with the sintered wick, the forming principle of copper powders in wicks and MHP's heat transfer capabilities were first analyzed, then copper powders with different cell sizes and dispersions were sintered in RXL-12-11 resistance furnace under the protection of the hydrogen at different sintering temperatures for different durations of sintering time, and finally the sintered wicks' scanning electron microscope (SEM) images and their heat transfer capabilities were analyzed. The results indicate that the wick sintered with copper powders of larger cell size or smaller size range has better sintering properties and larger heat transfer capabilities; and that the increase of either sintering temperatures or sintering time also helps to improve the wick's sintering properties and heat transfer capabilities, and the former affects more obviously than the latter. Considering both its manufacturing cost and performance requirements, it is recommended that copper powders with the size range of 140-170 μm are sintered at 900-950℃ for 30-60 min in practical manufacturing. In addition, two approaches to improve wick's porosity are also proposed through theoretical analysis, which suggests that the larger the wick's porosity, the better the heat transfer capabilities of the MHP.
基金Project(2007CB613705)supported by the National Basic Research Program of China
文摘The effects of two kinds of heat treatments T4(solution treatment) and T6(aging treatment) on the corrosion behaviors of Mg-3Zn magnesium alloy were studied by electrochemical measurements and scanning electron microscopy(SEM) .It is found that zinc element enriches along grain boundaries to exhibit a network microstructure for both T4-and T6-treated alloy.For T6 treatment,larger MgZn particles form mainly on grain boundary and fine MgZn particles precipitate on matrix.Compared with cast alloy,T4 treatment could decrease the amounts of MgZn particles,and decrease the zinc content of zinc-rich net-segregation.Electrochemical measurements show that T4 treatment increases the corrosion resistance while T6 treatment decreases the corrosion resistance of Mn-3Zn alloy.
基金Supported partially by the Natural Science Foundation of Yunnan Province(2010ZC051)Analysis and Testing Foundation(2009-041)Starting Research Fund(14118245) from Kunming University of Science and Technology
文摘A facile and practical route was introduced to prepare LiFePO4/C cathode material with nano-sized primary particles and excellent electrochemical performance. LiH2PO4 was synthesized by using H3PO4 and LiOH as raw materials. Then, as-prepared LiH2PO4, reduced iron powder andα-D-glucose were ball-milled, dried and sin-tered to prepare LiFePO4/C. X-ray diffractometry was used to characterize LiH2PO4, ball-milled product and LiFePO4/C. Differential scanning calorimeter-thermo gravimetric analysis was applied to investigate possible reac-tions in sintering and find suitable temperature for LiFePO4 formation. Scanning electron microscopy was em-ployed for the morphology of LiFePO4/C. As-prepared LiH2PO4 is characterized to be in P21cn(33) space group, which reacts with reduced iron powder to form Li3PO4, Fe3(PO4)2 and H2 in ball-milling and sintering. The appro-priate temperature for LiFePO4/C synthesis is 541.3-976.7 ℃. LiFePO4/C prepared at 700 ℃ presents nano-sized primary particles forming aggregates. Charge-discharge examination indicates that as-prepared LiFePO4/C displays appreciable discharge capacities of 145 and 131 mA·h·g^-1 at 0.1 and 1 C respectively and excellent discharge ca-pacity retention.
基金Project(2007AA03Z0455) supported by the National High Technology Research and Development Program ("863" Program) of ChinaProject(BE2010194) supported by Science & Technology Pillar Program of Jiangsu in China+3 种基金Project(BE2009168) supported by Science & Technology Pillar Program of Jiangsu in ChinaProject supported by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education InstitutionsProject(KF201103) supported by State Key Laboratory of New Ceramic and Fine Processing Tsinghua UniversityProject(CXZZ12_0415) supported by Innovation Foundation for Graduate Students of Jiangsu Province,China
文摘The effects of alkali oxides (Na2O and K2O addition on both the sintering behavior and dielectric properties of Ca-AI-B-Si-O glass/Al2O3 composites were investigated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results show that the increasing amount of alkali oxides in the glass causes the decrease of [SiO4], which results in the decrease of the continuity of glass network, and leads to the decrease of the softening temperature Tf of the samples and the increasing trend of crystallization. And that deduces corresponding rise of densification, dielectric constant, dielectric loss of the low temperature co-fired ceramic (LTCC) materials and the decrease of its thermal conductivity. By contrast, the borosilicate glass/A1203 composites with 1.5% (mass fraction) alkali oxides sintered at 875 ℃ for 30 rain exhibit better properties of a bulk density of 2.79 g/cm3, a porosity of 0.48%, a 2 value of 2.28 W/(m.K), a er value of 7.82 and a tand value of 9.1 × 10-4 (measured at 10 MHz).
基金Project(2008S089)supported by the Key Laboratory Fund of Liaoning Province,ChinaProject(2007010303025)supported by Shenyang Talents Supporting ProgramProject(50731002)supported by the National Natural Science Foundation of China
文摘The microstructure and tensile properties of the Mg-1.0%Sn-xY(x=1.5%,3.0%,3.5%,atom fraction)alloys extruded indirectly at 350℃ were investigated by means of optical microscopy,scanning electron microscopy and tensile test.The mean grain sizes ofα-Mg matrix in the three extruded alloys are 6,8 and 12μm,respectively,slightly increasing with the addition of Y. The relationship between microstructure and strength was discussed in detail.The results show that the addition of Y has little effect on the grain refinement of the as-extruded Mg-Sn based alloys above.The only MgSnY phase is detected in the Mg-Sn-1.5%Y alloy, and the Sn3Y5 phase in the Mg-Sn-3.5%Y alloy,whereas both of them simultaneously exist in the Mg-Sn-3.0%Y alloy.The particle shape of MgSnY and Sn3Y5 phase,inherited from the solidification,has little change before and after hot extrusion.Mg-Sn-3.0%Y alloy has the highest ultimate tensile strength(UTS),305 MPa,by over 50%compared with that of the other two alloys.
文摘Gelatins extracted from two edible insects Aspongubus viduatus (melon bug) and Agonoscelis pubescens (sorghum bug) were studied. The two insects showed 27.0 and 28.2% crude protein, respectively. Extraction of gelatin using hot water gave high yield followed by mild acid and distilled water extraction, respectively. SDS-PAGE pattern showed low molecular weight chains, and the two gelatins contained protein with molecular weight of 40 kDa as main component. The differential scanning calorimetry thermograms results confirm no difference between extraction methods concerning the extracted gelatin quality. FTIR spectra of melon and sorghum bug gelatins were similar and the absorption bands were situated in more than 6 bands in melon bug gelatin and only 6 bands in sorghum bug gelatin. Amide II bands of gelatins from both melon and sorghum bug appeared at around 1554 cm^-1, while Amide I bands (1734-1632 cmt) appeared only in melon bug method 2 (MB2) and melon bug method3 (MB3). Microstructures of the insect gelatin examined with the scanning electron microscope showed that melon bug exhibited the finest gelatin network with very small voids. Melon bug gelatin showed finer structure with smaller protein strands and voids than sorghum bug gelatin.
基金Project(2007CB613704) supported by the National Basic Research Program of China
文摘The microstructure evolution of an extruded Mg-8.57Gd-3.72Y-0.54Zr (mass fraction, %, GW94) alloy during reheating into the semisolid state was investigated using optical microscopy (OM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). Typical semisolid microstructure with globular solid particles distributed in the liquid matrix is obtained over 600 ℃. The solid content of (Gd+Y) in the primary a-Mg particles decreases with increasing the semisolid temperature. With the prolongation of isothermal holding time, the liquid fraction does not change significantly, while the grains grow up and spheroidize. Three methods used to determine the liquid fraction as a function of temperature, namely quantitative metallography on quenched microstructures, cooling curve thermal analysis, and thermodynamic calculations were further compared.
基金Project(CXLX14-1098)supported by Jiangsu Province Postgraduate Scientific Research Innovation Program,China
文摘The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments. The microstructures, phases, residual stresses and retained austenite content of 1Cr5 Mo steel welding joint before and after LHT were analyzed with optical microscope and X-ray diffraction, respectively. The cracking morphologies and chemical compositions of corrosion products after salt spray corrosion were analyzed with field emission scanning electron microscopy(FESEM) and energy disperse spectroscopy(EDS), respectively, the polarization curves were measured on a PS-268 A type electrochemical workstation, and the mechanism of corrosion resistance by LHT was investigated as well. The results show that the passive film of original sample is destroyed owing to the corrosive media penetrating into the subsurface, resulting in the redox reaction. The content of residual austenite in the surface and the self-corrosion potential are increased by LHT, which is contributed to improving the capability of salt spray corrosion resistance.
基金"Twelfth Five-year Plan"for Sci & Tech Research of China(No.2011BAG03B02No.2011BAG03B06)
文摘Hot stamping 22MnB5 steel plate with ultra-high strength has been widely used for body structural members in consideration of automobile safety and lightweight.This paper presents a verification program of simulating and testing pole impact in order to verify if the front crossbeam reinforcement assembly can meet the design requirements,reduce the overall vehicle simulation and test cost and shorten the operation period.In the same condition,the simulation proved conforming to the design requirements;however,the bumper cracked at the impacting point in the course of pole impact test.The analysis of the crack by optical microscope,Vickers and scanning electron microscope indicates that mixture of ferrite,bainite and martensite was produced in the weld heat-affected zone of the 340/590DP tow hook holder and the 22MnB5 front crossbeam;therefore,their hardness and mechanical property were reduced obviously,so that they fractured when impacted.No welding process with continuous weld but spot welding or other bonding method may be employed for the reason that the capacity of the 22MnB5 steel plate in the weld heat-affected zone was reduced obviously.
基金Supported by the National Natural Science Foundation of China (20671084)
文摘Perovskite-type La0.8Sr0.2MnO3 was prepared by stearic acid gel combustion method.The obtained powders were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),scaning electron micrograph(SEM)and X-ray photoelectron spectroscopy(XPS)techniques.The catalytic activity of La0.8Sr0.2MnO3 was investigated on thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)by thermal gravity-differential scanning calorimetry(TG-DSC)techniques.The experimental results show that La0.8Sr0.2MnO3 is an effective catalyst for HMX thermal decomposition.The surface-adsorbed species such as H2O,OH - and adsorbed oxygen(Oad)could result in an advance in the onset temperature of HMX thermal decomposition.The mixture system of Mn 3+ and Mn 4+ ions and lattice oxygen could play key roles for the increase of the decomposition heat of HMX because these exothermic reactions could be catalyzed by La0.8Sr0.2MnO3 between CO and NOx(from the thermal decomposition of HMX)and the oxidation reaction of CO.According to the previous researches and our results,perovskite-type La0.8Sr0.2MnO3 may be used as a novel catalyst or modifier for nitrate ester plasticized polyether(NEPE)propellant.
文摘The galvanic corrosion behavior of metal-matrix composite plain carbon steel/boron carbide (B4C) in 3.5% NaCl solution was studied. The composite was locally produced as a weld band on carbon steel by means of the gas tungsten arc welding process and using nickel as the wetting agent. Samples from the weld band, heat-affected zone and parent metal region were extracted precisely and DC/AC electrochemical tests in combination with techniques such as scanning electron microcopy and energy dispersive spectrometry were conducted. The results of the electrochemical tests show that the corrosion resistance of the parent metal sample is higher than that of the welded composite and the HAZ samples. However, as the corrosion potential (Eco^r) of the parent metal is more positive than other two samples, this becomes the cathode in galvanic couples with two other samples. On the other hand, the weld composite sample is also cathodic due to its more positive Ecorr compared to HAZ sample. This means that the HAZ can be particularly at risk of preferential dissolution. The approach can be used in specific areas on plain carbon steel to locally increase hardness and resistance to abrasion and reduce manufacturing costs.
基金Project(51172287)supported by the National Natural Science Foundation of ChinaProject(2012-2013)supported by the Laboratory Research Fund of the State Key Laboratory of Powder Metallurgy,China
文摘In order to develop the applications of ore tailings, the glass ceramics were prepared by using a conventional melting-quenching-sintering process. The phase component, microstructures, magnetic properties and thermal conductivities of the prepared glass ceramics were investigated by using X-ray diffractometer, scanning electron microscopy, vibrating sample magnetometer and thermophysical properties tester, respectively. The results show that orthorhombic olivine-type phase and triclinic sunstone-type phase formed when the glass was annealed at 700 oC, the concentration of olivine-type and sunstone-type phases decreased, the spinel-type cubic phase occurred and the amount increased when the annealing temperatures increased. The magnetic properties from the cubic spinel ferrites were detected in the glass ceramics, and the related saturation magnetization increased with the annealing temperature increasing. The porous glass ceramics with magnetic property showed much lower thermal conductivity, compared with the non-magnetic porous glass-ceramic and the dense glass-ceramics.
基金Project(20876160) supported by the National Natural Science Foundation of China
文摘The thermal decomposition process of basic magnesium carbonate was investigated. Firstly, Basic magnesium carbonate was prepared from magnesite, and the characteristics of the product were detected by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Subsequently, the thermal decomposition process of basic magnesium carbonate in air was studied by thermogravimetry-differential thermogravimetry (TG-DTG). The results of XRD confirm that the chemical composition of basic magnesium carbonate is 4MgCO3·Mg(OH)2·4H2O. And the SEM images show that the sample is in sheet structure, with a diameter of 0.1-1 μm. The TG-DTG results demonstrate that there are two steps in the thermal decomposition process of basic magnesium carbonate. The apparent activation energies (E) were calculated by Flyrm-Wall-Ozawa method. It is obtained from Coats-Redfem's equation and Malek method that the mechanism functions of the two decomposition stages are D3 and A1.5, respectively. And then, the kinetic equations of the two steps were deduced as well.
文摘We report the synthesis ofZnO nanowires grown on glass by spin coating and using a commercial microwave oven. 10 mM solutions of zinc acetate dehydrate and 12propanol were spin coated on glass at 2000 rpm for 60 s. A seed layer was obtained after three layers of spin coating. Vertical ZnO nanowires were then grown by dipping the substrate in an equimolar solution of zinc nitrate hexahydrate and hexamethylenetetramine subsequently, films were heated with a commercially microwave oven at different power settings (140, 350 and 700 W). The ZnO nanowires were characterized optically and morphologically. Scanning electron microscopy analysis showed that the size of ZnO nanowires was 50 nm in diameter and 500 nm in length. XRD patterns and IR spectra revealed the presence of Zn(OH)2 on the films, when low power in the microwave oven was utilized. The ZnO nanowires bandgap energy was obtained from optical transmission spectra.
基金Project(50274021) supported by the National Natural Science Foundation of China and Baoshan Iron and Steel Co., Ltd.
文摘β-Sialon/ZrN bonded corundum composites were synthesized using fused white corundum,alumina micro powder,zircon and carbon black by nitridation reaction sintering process. Phase composition and microstructure of the synthesized composites were investigated by X-ray powder diffraction and scanning electronic microscope,and the formation process of the composites was discussed. The results show that the composites with different compositions can be obtained by controlling the heating temperature and contents of zircon and carbon black. The proper temperature to synthesize the composites is 1773 K.
基金Supported by the National Natural Science Foundation of China(No.51205004,51475003)Beijing Natural Science Foundation(No.3152010)Beijing Education Committee Science and Technology Program(No.km201510009004)
文摘TRIP590 advanced high strength steel sheets were heated by laser with different powers.Changes of the microstructure and the hardness of TRIP590 steel under laser heating with different powers were investigated by metallographic microscope,scanning electron microscope,and hardness tester.The purpose was to study the effect of laser power on microstructure and hardness of TRIP590 steel.It is shown that the power of laser plays an important role on the microstructure and hardness of heated steel sheets.The results are helpful to determine suitable power for the laser auxiliary forming of Trip590 steel in order to obtain uniform microstructure and high hardness.
基金Project(2008A090300016) supported by Major Science & Technology Special Program of Guangdong Province,China
文摘Micaceous iron oxide (MIO) with a hexagonal flaky shape was prepared by hydrothermal method. The ferric hydroxide used as precursor was obtained by an acidic leaching solution of pyrite cinders reacting with ammonia solution. The optimal experimental conditions for preparing micaceous iron oxide were investigated by orthogonal experiments. Micaceous iron oxide can be successfully prepared when optimal parameters of total iron concentration of 2.0 mol/L, pH value of 8, n(Fe2+)/n(Fe3+) of 0.1, mass of seed crystal of 1 g, reaction temperature of 260 ℃ and reaction time of 30 min are applied. X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffractometry (SAEM) were adopted to characterize the hydrothermal products prepared under optimal conditions. The results indicate that highly crystallized α-Fe2O3 hexagonal flakes, about 1.0-1.5 μm in diameter and 0.1 μm in thickness, are prepared. Furthermore, the quality of micaceous iron oxide prepared can meet the required characteristics of micaceous iron oxide pigments for paints (ISO 10601--2007).
文摘Al-doped ZnO (ZAO) films were successfully deposited on the surface of common glasses by using low-temperature hydrothermal approach. In the reaction solution, the molar ratio of Al3+ to Zn2+ was 1∶100, the annealing temperature and time were 200 ℃ and 2-6 h, respectively. The structure of the thin films was identified by X-ray diffraction (XRD), the surface morphology and thickness of the thin films were observed by scanning electron microscopy (SEM), and the electrical performance of the thin films was measured by four-point probes. It was shown that the films with an average particle size of 27.53 nm had a preferential orientation along (002), Al3+ had replaced the position of Zn2+ in the lattice without forming the Al2O3 phase and its thickness was 20-25 μm. With the increased annealing time, the intensity of diffraction peaks was decreased, the film exhibited irregular surface morphology gradually, and the resistivity of ZAO films was increased. The lowest resistivity obtained in this study was 3.45×10-5Ω·cm.
基金Project(21271188) supported by the National Natural Science Foundation of China
文摘A Ti interlayer with thickness about 300 nm was sputtered on Cu microchannels, followed by an ultrasonic seeding with nanodiamond powders. Adherent diamond film with crystalline grains close to thermal equilibrium shape was tightly deposited by hot-filament chemical vapor deposition(HF-CVD). The nucleation and growth of diamond were investigated with micro-Raman spectroscope and field emission scanning electron microscope(FE-SEM) with energy dispersive X-ray detector(EDX). Results show that the nucleation density is found to be up to 1010 cm-2. The enhancement of the nucleation kinetics can be attributed to the nanometer rough Ti interlayer surface. An improved absorption of nanodiamond particles is found, which act as starting points for the diamond nucleation during HF-CVD process. Furthermore, finite element simulation was conducted to understand the thermal management properties of prepared diamond/Cu microchannel heat sink.