Mechanical properties and microstructures of Al-Li-Cu-Mg-Ag alloy after solution treatments were investigated by means of optical microscopy (OM), tensile test, hardness measurement and electrical conductivity test,...Mechanical properties and microstructures of Al-Li-Cu-Mg-Ag alloy after solution treatments were investigated by means of optical microscopy (OM), tensile test, hardness measurement and electrical conductivity test, differential scanning calorimetric (DSC), energy dispersive X-ray (EDX), scanning electron microscopy (SEM) and transition electron microscopy (TEM), respectively The results show that both tensile strength and hardness increase first and then decrease with temperature at constant holding time of 30 min with maximum strength and hardness appearing at 520 ℃. Tensile strength, hardness and elongation of samples treated at 520 ℃ for 30 min are 566 MPa (σb), 512 MPa (σ0.2), HB 148 and 8.23% (δ), respectively. There are certain amount of fine T1 (AI2CuLi) phase dispersing among AI substrates according to TEM images. This may result in mixed fracture morphology with trans-granular and inter-granular delamination cracks observed in SEM images.展开更多
In this work,an old scanning electron microscope(SEM)is refurbished to enhance its image processing capability.How to digitally sample and process an analog image is also presented.An NI PCI-6259 multiple input/output...In this work,an old scanning electron microscope(SEM)is refurbished to enhance its image processing capability.How to digitally sample and process an analog image is also presented.An NI PCI-6259 multiple input/output data acquisition(DAQ)board is used to acquire signals originally being sent to an analog display,and then convert the signals into a digital image.Two output channels are used for raster scan of the horizontal and verticle axes of the image buffer,while one input channel is used to read the brightness signals at various coordinate points.Synchronous method is used to maximize the DAQ speed.Finally,the digitally buffered images are read out to display and saved in a hard drive.The hardware and software designs of this work are explained in great detail,which can serve as a very good example for fast synchronous DAQ,advanced virtual instrument design and structural driver programming with LabVIEW.展开更多
This work explores the methodology for micron-scale water droplet contact angle derivation for the warty surface of octocoral sclerites. The calcite-made sclerites of the Red Sea octocoral Dendronephthya hemprichi hav...This work explores the methodology for micron-scale water droplet contact angle derivation for the warty surface of octocoral sclerites. The calcite-made sclerites of the Red Sea octocoral Dendronephthya hemprichi have been chosen as a model for this study. Water droplet condensation on the sclerites has been in-situ investigated using Quanta 200 FEG (field emission gun) ESEM (environmental scanning electron microscope) under wet environmental conditions. Two different analysis methods of droplet top and side views have been applied to determine the contact angle based on the secondary electron images. The ESEM image analysis for the sclerites indicates that their surface is hydrophilic. The microscopic contact angle is measured to be 45.3°±6.3°. The macroscopic contact angle has been calculated by using the Wenzel model for the surface texturing of the sclerites.展开更多
This paper expounds upon the basic principle of scanning electron microscopy(SEM),the main features of image types,and different signals,and the applications and prospects in earth sciences research are reviewed.High-...This paper expounds upon the basic principle of scanning electron microscopy(SEM),the main features of image types,and different signals,and the applications and prospects in earth sciences research are reviewed.High-resolution field emission SEM allows observation and investigation of a very fine micro area in situ.Using low-vacuum mode SEM,geological insulating samples can be analyzed directly without coating,demonstrating the wide application prospect.Combined with backscatter detector(BSE),energy dispersal X-ray spectroscopy(EDS),cathodoluminescence spectrometry(CL),and electron back-scattering diffraction(EBSD),SEM can yield multiple types of information about geological samples at the same time,such as superficial microstructure,CL analysis,BSE image,component analysis,and crystal structure features.In this paper,we use examples to discuss the geological application of SEM.We stress that we should not only focus on the CL image analysis,but strengthen CL spectrum analyses of minerals.These results will effectively reveal the mineral crystal lattice defects and trace element composition and can help to reconstruct mineral growth conditions precisely.展开更多
基金Foundation item: Project(6140506) supported by GAD (General Armament Department), China
文摘Mechanical properties and microstructures of Al-Li-Cu-Mg-Ag alloy after solution treatments were investigated by means of optical microscopy (OM), tensile test, hardness measurement and electrical conductivity test, differential scanning calorimetric (DSC), energy dispersive X-ray (EDX), scanning electron microscopy (SEM) and transition electron microscopy (TEM), respectively The results show that both tensile strength and hardness increase first and then decrease with temperature at constant holding time of 30 min with maximum strength and hardness appearing at 520 ℃. Tensile strength, hardness and elongation of samples treated at 520 ℃ for 30 min are 566 MPa (σb), 512 MPa (σ0.2), HB 148 and 8.23% (δ), respectively. There are certain amount of fine T1 (AI2CuLi) phase dispersing among AI substrates according to TEM images. This may result in mixed fracture morphology with trans-granular and inter-granular delamination cracks observed in SEM images.
文摘In this work,an old scanning electron microscope(SEM)is refurbished to enhance its image processing capability.How to digitally sample and process an analog image is also presented.An NI PCI-6259 multiple input/output data acquisition(DAQ)board is used to acquire signals originally being sent to an analog display,and then convert the signals into a digital image.Two output channels are used for raster scan of the horizontal and verticle axes of the image buffer,while one input channel is used to read the brightness signals at various coordinate points.Synchronous method is used to maximize the DAQ speed.Finally,the digitally buffered images are read out to display and saved in a hard drive.The hardware and software designs of this work are explained in great detail,which can serve as a very good example for fast synchronous DAQ,advanced virtual instrument design and structural driver programming with LabVIEW.
文摘This work explores the methodology for micron-scale water droplet contact angle derivation for the warty surface of octocoral sclerites. The calcite-made sclerites of the Red Sea octocoral Dendronephthya hemprichi have been chosen as a model for this study. Water droplet condensation on the sclerites has been in-situ investigated using Quanta 200 FEG (field emission gun) ESEM (environmental scanning electron microscope) under wet environmental conditions. Two different analysis methods of droplet top and side views have been applied to determine the contact angle based on the secondary electron images. The ESEM image analysis for the sclerites indicates that their surface is hydrophilic. The microscopic contact angle is measured to be 45.3°±6.3°. The macroscopic contact angle has been calculated by using the Wenzel model for the surface texturing of the sclerites.
基金supported by the National Natural Science Foundation of China(Grant No.41402031)
文摘This paper expounds upon the basic principle of scanning electron microscopy(SEM),the main features of image types,and different signals,and the applications and prospects in earth sciences research are reviewed.High-resolution field emission SEM allows observation and investigation of a very fine micro area in situ.Using low-vacuum mode SEM,geological insulating samples can be analyzed directly without coating,demonstrating the wide application prospect.Combined with backscatter detector(BSE),energy dispersal X-ray spectroscopy(EDS),cathodoluminescence spectrometry(CL),and electron back-scattering diffraction(EBSD),SEM can yield multiple types of information about geological samples at the same time,such as superficial microstructure,CL analysis,BSE image,component analysis,and crystal structure features.In this paper,we use examples to discuss the geological application of SEM.We stress that we should not only focus on the CL image analysis,but strengthen CL spectrum analyses of minerals.These results will effectively reveal the mineral crystal lattice defects and trace element composition and can help to reconstruct mineral growth conditions precisely.