Tribological properties of 150 SN mineral oil and the oils doped with different contents of zinc butyloctyldithiophosphate(T202) under magnetic field or non-magnetic field were evaluated on a four-ball tribotester by ...Tribological properties of 150 SN mineral oil and the oils doped with different contents of zinc butyloctyldithiophosphate(T202) under magnetic field or non-magnetic field were evaluated on a four-ball tribotester by applying an external magnetic field around the friction region. Moreover, the morphology and the tribochemical characteristics of worn surfaces were examined by a scanning electron microscope(SEM) and an X-ray photoelectron spectrometer(XPS). Then the lubrication mechanisms were discussed. The tribological test results indicated that the wear scar diameters(WSDs) of steel balls lubricated by the T202-containing lubricating oils and the friction coefficients of the corresponding oil under magnetic field were smaller than those without magnetic affection. The worn surface lubricated with the T202-formulated oils in a magnetic field was smoother than that obtained under the normal condition. Furthermore, the results of XPS analysis indicated that tribochemical films on the surfaces lubricated with T202-doped oils were mainly composed of compounds such as FeSO_4, FeS and ZnS. The atomic concentrations of oxygen, sulfur, iron, zinc and phosphorus species identified in T202 under magnetic field were higher than those without magnetic impact. It can be inferred that the improved anti-wear and friction-reducing ability of T202-doped oils was attributed to the promoted tribochemical reactions and the modification of the worn surfaces induced by magnetic field.展开更多
In order to study the relationship between the triggering current, deuterium pressure and the excess heat, a series of experiments were made in a D/Pd gas-loading system. By comparing the system constants (k = AT//kP...In order to study the relationship between the triggering current, deuterium pressure and the excess heat, a series of experiments were made in a D/Pd gas-loading system. By comparing the system constants (k = AT//kP) in both nitrogen and deuterium atmosphere we found an optimum current (8 A) and a deuterium pressure (9 x 104 Pa) in which the system could release a maximum excess power (more than 80 W). The reproducibility was 16/16 and the excess energy released in the longest experiment was about 300 MJ within 40 days, which was corresponding to 104 eV for each palladium atom. Analysis of the palladium surface with a SEM (scanning electron microscopy) and an EDS (energy dispersive spectrometer) revealed that some new surface topographical feature with concentrations of unexpected elements (such as Ag, Sn, Pb and Ca) appeared after the current triggering. The results implied that the excess heat might come from a nuclear transmutation.展开更多
The characteristics of inclusions in two types of low-carbon steels by different deoxidization methods have been investigated by using the welding thermal simulation, the optical microscopy and scanning electron micro...The characteristics of inclusions in two types of low-carbon steels by different deoxidization methods have been investigated by using the welding thermal simulation, the optical microscopy and scanning electron microscopy. In addition, the effects of inclusions on microstructure and properties of heat-affected-zone were studied. The nucleation and growth of intragranular acicular ferrite was observed in situ by the laser scanning confocal microscopy. The distribution of Mn element near the inclu- sion was also analyzed by the auger electron spectroscopy. The results showed that the inclusions in A1 killed steel are mainly aluminum oxides, manganese sulfide and titanium nitrides, and that the inclusions in Ti killed steel are mainly titanium oxide, manganese sulfide complex inclusion and single manganese sulfide. The auger electron spectroscopy showed that there is an Mn-depleted zone near the interface of TiOffMnS complex inclusion in the size of 1-3 gm. It could be the effective nucleus of intragranular acicular ferrite which could divide the prior austenite grains, inhibit the growth of low-temperature microstruc- ture, and refine the final microstructure, so as to improve the toughness of heat-affected-zone significantly.展开更多
基金financial support provided by the National Natural Science Foundation of China(Project No.51375491)the Natural Science Foundation of Chongqing(Project No.CSTC,2014JCYJAA50021)the Innovation Fund of Logistical Engineering University(Project No.YZ13-43703)
文摘Tribological properties of 150 SN mineral oil and the oils doped with different contents of zinc butyloctyldithiophosphate(T202) under magnetic field or non-magnetic field were evaluated on a four-ball tribotester by applying an external magnetic field around the friction region. Moreover, the morphology and the tribochemical characteristics of worn surfaces were examined by a scanning electron microscope(SEM) and an X-ray photoelectron spectrometer(XPS). Then the lubrication mechanisms were discussed. The tribological test results indicated that the wear scar diameters(WSDs) of steel balls lubricated by the T202-containing lubricating oils and the friction coefficients of the corresponding oil under magnetic field were smaller than those without magnetic affection. The worn surface lubricated with the T202-formulated oils in a magnetic field was smoother than that obtained under the normal condition. Furthermore, the results of XPS analysis indicated that tribochemical films on the surfaces lubricated with T202-doped oils were mainly composed of compounds such as FeSO_4, FeS and ZnS. The atomic concentrations of oxygen, sulfur, iron, zinc and phosphorus species identified in T202 under magnetic field were higher than those without magnetic impact. It can be inferred that the improved anti-wear and friction-reducing ability of T202-doped oils was attributed to the promoted tribochemical reactions and the modification of the worn surfaces induced by magnetic field.
文摘In order to study the relationship between the triggering current, deuterium pressure and the excess heat, a series of experiments were made in a D/Pd gas-loading system. By comparing the system constants (k = AT//kP) in both nitrogen and deuterium atmosphere we found an optimum current (8 A) and a deuterium pressure (9 x 104 Pa) in which the system could release a maximum excess power (more than 80 W). The reproducibility was 16/16 and the excess energy released in the longest experiment was about 300 MJ within 40 days, which was corresponding to 104 eV for each palladium atom. Analysis of the palladium surface with a SEM (scanning electron microscopy) and an EDS (energy dispersive spectrometer) revealed that some new surface topographical feature with concentrations of unexpected elements (such as Ag, Sn, Pb and Ca) appeared after the current triggering. The results implied that the excess heat might come from a nuclear transmutation.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2010CB630801)
文摘The characteristics of inclusions in two types of low-carbon steels by different deoxidization methods have been investigated by using the welding thermal simulation, the optical microscopy and scanning electron microscopy. In addition, the effects of inclusions on microstructure and properties of heat-affected-zone were studied. The nucleation and growth of intragranular acicular ferrite was observed in situ by the laser scanning confocal microscopy. The distribution of Mn element near the inclu- sion was also analyzed by the auger electron spectroscopy. The results showed that the inclusions in A1 killed steel are mainly aluminum oxides, manganese sulfide and titanium nitrides, and that the inclusions in Ti killed steel are mainly titanium oxide, manganese sulfide complex inclusion and single manganese sulfide. The auger electron spectroscopy showed that there is an Mn-depleted zone near the interface of TiOffMnS complex inclusion in the size of 1-3 gm. It could be the effective nucleus of intragranular acicular ferrite which could divide the prior austenite grains, inhibit the growth of low-temperature microstruc- ture, and refine the final microstructure, so as to improve the toughness of heat-affected-zone significantly.