In order to study algebraic structures of parallelizable sphere s7, the notions of quasimodules and biquasimodnle algebras over Hopf quasigroups, which are not required to be associative, are introduced. The lack of a...In order to study algebraic structures of parallelizable sphere s7, the notions of quasimodules and biquasimodnle algebras over Hopf quasigroups, which are not required to be associative, are introduced. The lack of associativity of quasimodules is compensated for by conditions involving the antipode. The twisted smash product for Hopf quasigroups is constructed using biquasimodule algebras, which is a generalization of the twisted smash for Hopf algebras. The twisted smash product and tensor coproduct is turned into a Hopf quasigroup if and only if the following conditions (h1→a) h2 = (h2→a) h1, (a←S(h1)) h2 = (a←S(h2)) h1, hold. The obtained results generalize and improve the corresponding results of the twisted smash product for Hopf algebras.展开更多
基金The National Natural Science Foundation of China( No. 10971188 )the Natural Science Foundation of Zhejiang Province(No.Y6110323)+2 种基金Jiangsu Planned Projects for Postdoctoral Research Funds(No. 0902081C)Zhejiang Provincial Education Department Project (No.Y200907995)Qiantang Talents Project of Science Technology Department of Zhejiang Province (No. 2011R10051)
文摘In order to study algebraic structures of parallelizable sphere s7, the notions of quasimodules and biquasimodnle algebras over Hopf quasigroups, which are not required to be associative, are introduced. The lack of associativity of quasimodules is compensated for by conditions involving the antipode. The twisted smash product for Hopf quasigroups is constructed using biquasimodule algebras, which is a generalization of the twisted smash for Hopf algebras. The twisted smash product and tensor coproduct is turned into a Hopf quasigroup if and only if the following conditions (h1→a) h2 = (h2→a) h1, (a←S(h1)) h2 = (a←S(h2)) h1, hold. The obtained results generalize and improve the corresponding results of the twisted smash product for Hopf algebras.