In order to study algebraic structures of parallelizable sphere s7, the notions of quasimodules and biquasimodnle algebras over Hopf quasigroups, which are not required to be associative, are introduced. The lack of a...In order to study algebraic structures of parallelizable sphere s7, the notions of quasimodules and biquasimodnle algebras over Hopf quasigroups, which are not required to be associative, are introduced. The lack of associativity of quasimodules is compensated for by conditions involving the antipode. The twisted smash product for Hopf quasigroups is constructed using biquasimodule algebras, which is a generalization of the twisted smash for Hopf algebras. The twisted smash product and tensor coproduct is turned into a Hopf quasigroup if and only if the following conditions (h1→a) h2 = (h2→a) h1, (a←S(h1)) h2 = (a←S(h2)) h1, hold. The obtained results generalize and improve the corresponding results of the twisted smash product for Hopf algebras.展开更多
In order to solve the problem of real-time soft tissue torsion simulation in virtual surgeries,a torsion model based on coil spring is proposed to actualize real-time interactions and applications in virtual surgeries...In order to solve the problem of real-time soft tissue torsion simulation in virtual surgeries,a torsion model based on coil spring is proposed to actualize real-time interactions and applications in virtual surgeries. The proposed model is composed of several connected coil springs in series. The sum of torsion deformation on every coil is equivalent to the soft tissue surface deformation. The calculation of the model is simple because the method for calculating the torsion deformation for each coil spring is the same. The virtual surgery simulation system is established on PHANTOM OMNI haptic device based on the Open GL 3 D graphic interface and VC + + software,and it is used to simulate the torsion deformation of virtual legs and arms. Experimental results show that the proposed model can effectively simulate the torsion deformation of soft tissue while being of real-time performance and simplicity,which can well meet requirements of virtual operation simulations.展开更多
The hydraulic roll-bending device was studied, which was widely used in modem cold rolling mills to regulate the strip flatness. The loaded roll gap crown mathematic model and the strip crown mathematic model of the r...The hydraulic roll-bending device was studied, which was widely used in modem cold rolling mills to regulate the strip flatness. The loaded roll gap crown mathematic model and the strip crown mathematic model of the reversing cold rolling process were established, and the deformation model of roll stack system of the 6-high 1 250 mm high crown (HC) reversing cold rolling mill was built by slit beam method. The simulation results show that, the quadratic component of strip crown decreases nearly linearly with the increase of the work roll bending force, when the shifting value of intermediate roll is determined by the rolling process. From the first pass to the fifth pass of reversing rolling process, the crown controllability of bending force is gradually weakened. Base on analyzing the relationship among the main factors associated with roll-bending force in reversing multi-pass rolling, such as strip width and rolling force, a preset mathematic model of bending force is developed by genetic algorithm. The simulation data demonstrate that the relative deviation of flatness criterions in each rolling pass is improved significantly and the mean relative deviation of all five passes is decreased from 25.1% to 1.7%. The model can keep good shape in multi-pass reversing cold rolling process with the high prediction accuracy and can be used to guide the production process.展开更多
Reduction of drag torque in disengaged wet clutch is one of important potentials for vehicle transmission improvement. The flow of the oil film in clutch clearance is investigated. A three-dimension Navier-Stokes(N-S)...Reduction of drag torque in disengaged wet clutch is one of important potentials for vehicle transmission improvement. The flow of the oil film in clutch clearance is investigated. A three-dimension Navier-Stokes(N-S) equation based on laminar flow is presented to model the drag torque. Pressure and speed distribution in radial and circumferential directions are deduced. The theoretical analysis reveals that oil flow acceleration in radial direction caused by centrifugal force is the key reason for the shrinking of oil film as constant feeding flow rate. The peak drag torque occurs at the beginning of oil film shrinking. A variable is introduced to describe effective oil film area and drag torque after oil film shrinking is well evaluated with the variable. Under the working condition, tests were made to obtain drag torque curves at different clutch speed and oil viscosity. The tests confirm that simulation results agree with test data. The model performs well in the prediction of drag torque and lays a theoretical foundation to reduce it.展开更多
Alternating current electrical dynamometer is a common device to measure the torque of engines, such as the gasoline engine. In order to solve the problems such as high cost, high energy consumption and complicated me...Alternating current electrical dynamometer is a common device to measure the torque of engines, such as the gasoline engine. In order to solve the problems such as high cost, high energy consumption and complicated measurement system which exists in the direct measurement on the torque of alternating current electrical dynamometer, copper loss and iron loss are taken as two key factors and a soft-sensing model on the torque of alternating current electrical dynamometer is established using the fuzzy least square support vector machine (FLS-SVM). Then, the FLS-SVM parameters such as penalty factor and kernel parameter are optimized by adaptive genetic algorithm, torque soft-sensing is investigated in the alternating current electrical dynamometer, as well as the energy feedback efficiency and energy consumption during the measurement phase of a gasoline engine loading continual test is obtained. The results show that the minimum soft-sensing error of torque is about 0.0018, and it fluctuates within a range from -0.3 to 0.3 N·m. FLS-SVM soft-sensing method can increase by 1.6% power generation feedback compared with direct measurement, and it can save 500 kJ fuel consumption in the gasoline engine loading continual test. Therefore, the estimation accuracy of the soft measurement model on the torque of alternating current electrical dynamometer including copper loss and iron loss is high and this indirect measurement method can be feasible to reduce production cost of the alternating current electrical dynamometer and energy consumption during the torque measurement phase of a gasoline engine, replacing the direct method of torque measurement.展开更多
基金The National Natural Science Foundation of China( No. 10971188 )the Natural Science Foundation of Zhejiang Province(No.Y6110323)+2 种基金Jiangsu Planned Projects for Postdoctoral Research Funds(No. 0902081C)Zhejiang Provincial Education Department Project (No.Y200907995)Qiantang Talents Project of Science Technology Department of Zhejiang Province (No. 2011R10051)
文摘In order to study algebraic structures of parallelizable sphere s7, the notions of quasimodules and biquasimodnle algebras over Hopf quasigroups, which are not required to be associative, are introduced. The lack of associativity of quasimodules is compensated for by conditions involving the antipode. The twisted smash product for Hopf quasigroups is constructed using biquasimodule algebras, which is a generalization of the twisted smash for Hopf algebras. The twisted smash product and tensor coproduct is turned into a Hopf quasigroup if and only if the following conditions (h1→a) h2 = (h2→a) h1, (a←S(h1)) h2 = (a←S(h2)) h1, hold. The obtained results generalize and improve the corresponding results of the twisted smash product for Hopf algebras.
基金Supported by the National Natural Science Foundation of China(No.61502240,61502096,61304205,61773219)the Natural Science Foundation of Jiangsu Province(No.BK20141002,BK20150634)
文摘In order to solve the problem of real-time soft tissue torsion simulation in virtual surgeries,a torsion model based on coil spring is proposed to actualize real-time interactions and applications in virtual surgeries. The proposed model is composed of several connected coil springs in series. The sum of torsion deformation on every coil is equivalent to the soft tissue surface deformation. The calculation of the model is simple because the method for calculating the torsion deformation for each coil spring is the same. The virtual surgery simulation system is established on PHANTOM OMNI haptic device based on the Open GL 3 D graphic interface and VC + + software,and it is used to simulate the torsion deformation of virtual legs and arms. Experimental results show that the proposed model can effectively simulate the torsion deformation of soft tissue while being of real-time performance and simplicity,which can well meet requirements of virtual operation simulations.
基金Project(20050311890) supported by the Science and Technology Development Foundation of University of Science and Technology Beijing,China
文摘The hydraulic roll-bending device was studied, which was widely used in modem cold rolling mills to regulate the strip flatness. The loaded roll gap crown mathematic model and the strip crown mathematic model of the reversing cold rolling process were established, and the deformation model of roll stack system of the 6-high 1 250 mm high crown (HC) reversing cold rolling mill was built by slit beam method. The simulation results show that, the quadratic component of strip crown decreases nearly linearly with the increase of the work roll bending force, when the shifting value of intermediate roll is determined by the rolling process. From the first pass to the fifth pass of reversing rolling process, the crown controllability of bending force is gradually weakened. Base on analyzing the relationship among the main factors associated with roll-bending force in reversing multi-pass rolling, such as strip width and rolling force, a preset mathematic model of bending force is developed by genetic algorithm. The simulation data demonstrate that the relative deviation of flatness criterions in each rolling pass is improved significantly and the mean relative deviation of all five passes is decreased from 25.1% to 1.7%. The model can keep good shape in multi-pass reversing cold rolling process with the high prediction accuracy and can be used to guide the production process.
基金supported by National Defense Arming Pre-researching Project(Grant No. 40402060102)
文摘Reduction of drag torque in disengaged wet clutch is one of important potentials for vehicle transmission improvement. The flow of the oil film in clutch clearance is investigated. A three-dimension Navier-Stokes(N-S) equation based on laminar flow is presented to model the drag torque. Pressure and speed distribution in radial and circumferential directions are deduced. The theoretical analysis reveals that oil flow acceleration in radial direction caused by centrifugal force is the key reason for the shrinking of oil film as constant feeding flow rate. The peak drag torque occurs at the beginning of oil film shrinking. A variable is introduced to describe effective oil film area and drag torque after oil film shrinking is well evaluated with the variable. Under the working condition, tests were made to obtain drag torque curves at different clutch speed and oil viscosity. The tests confirm that simulation results agree with test data. The model performs well in the prediction of drag torque and lays a theoretical foundation to reduce it.
基金Project(11772126) supported by the National Natural Science Foundation of China
文摘Alternating current electrical dynamometer is a common device to measure the torque of engines, such as the gasoline engine. In order to solve the problems such as high cost, high energy consumption and complicated measurement system which exists in the direct measurement on the torque of alternating current electrical dynamometer, copper loss and iron loss are taken as two key factors and a soft-sensing model on the torque of alternating current electrical dynamometer is established using the fuzzy least square support vector machine (FLS-SVM). Then, the FLS-SVM parameters such as penalty factor and kernel parameter are optimized by adaptive genetic algorithm, torque soft-sensing is investigated in the alternating current electrical dynamometer, as well as the energy feedback efficiency and energy consumption during the measurement phase of a gasoline engine loading continual test is obtained. The results show that the minimum soft-sensing error of torque is about 0.0018, and it fluctuates within a range from -0.3 to 0.3 N·m. FLS-SVM soft-sensing method can increase by 1.6% power generation feedback compared with direct measurement, and it can save 500 kJ fuel consumption in the gasoline engine loading continual test. Therefore, the estimation accuracy of the soft measurement model on the torque of alternating current electrical dynamometer including copper loss and iron loss is high and this indirect measurement method can be feasible to reduce production cost of the alternating current electrical dynamometer and energy consumption during the torque measurement phase of a gasoline engine, replacing the direct method of torque measurement.