In order to study algebraic structures of parallelizable sphere s7, the notions of quasimodules and biquasimodnle algebras over Hopf quasigroups, which are not required to be associative, are introduced. The lack of a...In order to study algebraic structures of parallelizable sphere s7, the notions of quasimodules and biquasimodnle algebras over Hopf quasigroups, which are not required to be associative, are introduced. The lack of associativity of quasimodules is compensated for by conditions involving the antipode. The twisted smash product for Hopf quasigroups is constructed using biquasimodule algebras, which is a generalization of the twisted smash for Hopf algebras. The twisted smash product and tensor coproduct is turned into a Hopf quasigroup if and only if the following conditions (h1→a) h2 = (h2→a) h1, (a←S(h1)) h2 = (a←S(h2)) h1, hold. The obtained results generalize and improve the corresponding results of the twisted smash product for Hopf algebras.展开更多
Let (H, a) be a monoidal Hom-bialgebra and (B,p) be a left (H, a)-Hom-comodule coalgebra. The new monoidal Hom-algebra B#y H is constructed with a Hom-twisted product Ba[H] and a. B × H Hom-smash coproduc...Let (H, a) be a monoidal Hom-bialgebra and (B,p) be a left (H, a)-Hom-comodule coalgebra. The new monoidal Hom-algebra B#y H is constructed with a Hom-twisted product Ba[H] and a. B × H Hom-smash coproduct. Moreover, a sufficient and necessary condition for B#y / to be a monoidal Hom-bialgebra is given. In addition, let (H, a) be a Hom-σ- Hopf algebra with Hom-〇 --antipode SH, and a sufficient condition for this new monoidal Hom-bialgebra B#y H with the antipode S defined by S(b×h)=(1B×SH(a^-1)b(-1)))(SB(b(0))×1H to be a monoidal Hom-Hopf algebra is derived.展开更多
First, we present semisimple properties of twisted products by means of constructing an algebra isomorphism between twisted products and crossed products, and point out that there exist some relations among braided bi...First, we present semisimple properties of twisted products by means of constructing an algebra isomorphism between twisted products and crossed products, and point out that there exist some relations among braided bialgebras, paired bialgebras and Yang-Baxter coalgebras. Furthermore, we give an example to illustrate these relations by using Sweedler's 4-dimensional Hopf algebra. Finally, from starting off with Yang-Baxter coalgebras, we can construct some quadratic bialgebras such that they are braided bialgebras.展开更多
基金The National Natural Science Foundation of China( No. 10971188 )the Natural Science Foundation of Zhejiang Province(No.Y6110323)+2 种基金Jiangsu Planned Projects for Postdoctoral Research Funds(No. 0902081C)Zhejiang Provincial Education Department Project (No.Y200907995)Qiantang Talents Project of Science Technology Department of Zhejiang Province (No. 2011R10051)
文摘In order to study algebraic structures of parallelizable sphere s7, the notions of quasimodules and biquasimodnle algebras over Hopf quasigroups, which are not required to be associative, are introduced. The lack of associativity of quasimodules is compensated for by conditions involving the antipode. The twisted smash product for Hopf quasigroups is constructed using biquasimodule algebras, which is a generalization of the twisted smash for Hopf algebras. The twisted smash product and tensor coproduct is turned into a Hopf quasigroup if and only if the following conditions (h1→a) h2 = (h2→a) h1, (a←S(h1)) h2 = (a←S(h2)) h1, hold. The obtained results generalize and improve the corresponding results of the twisted smash product for Hopf algebras.
基金The National Natural Science Foundation of China(No.11371088,10871042,11571173)the Fundamental Research Funds for the Central Universities(No.KYLX15_0105)
文摘Let (H, a) be a monoidal Hom-bialgebra and (B,p) be a left (H, a)-Hom-comodule coalgebra. The new monoidal Hom-algebra B#y H is constructed with a Hom-twisted product Ba[H] and a. B × H Hom-smash coproduct. Moreover, a sufficient and necessary condition for B#y / to be a monoidal Hom-bialgebra is given. In addition, let (H, a) be a Hom-σ- Hopf algebra with Hom-〇 --antipode SH, and a sufficient condition for this new monoidal Hom-bialgebra B#y H with the antipode S defined by S(b×h)=(1B×SH(a^-1)b(-1)))(SB(b(0))×1H to be a monoidal Hom-Hopf algebra is derived.
文摘First, we present semisimple properties of twisted products by means of constructing an algebra isomorphism between twisted products and crossed products, and point out that there exist some relations among braided bialgebras, paired bialgebras and Yang-Baxter coalgebras. Furthermore, we give an example to illustrate these relations by using Sweedler's 4-dimensional Hopf algebra. Finally, from starting off with Yang-Baxter coalgebras, we can construct some quadratic bialgebras such that they are braided bialgebras.