Let H be a Hopf algebra and B an algebra with two linear maps δ, τ: H H→B. The necessary and sufficient conditions for the twisted crossed product B#^τδH equipped with the tensor product coalgebra structure to b...Let H be a Hopf algebra and B an algebra with two linear maps δ, τ: H H→B. The necessary and sufficient conditions for the twisted crossed product B#^τδH equipped with the tensor product coalgebra structure to be a bialgebra are proved. Then, B#^τδH is a coquasitriangular Hopf algebra under certain conditions. This coquasitriangular Hopf algerbra generalizes some known cross products. Finally, as an application, an explicit example is given.展开更多
文摘Let H be a Hopf algebra and B an algebra with two linear maps δ, τ: H H→B. The necessary and sufficient conditions for the twisted crossed product B#^τδH equipped with the tensor product coalgebra structure to be a bialgebra are proved. Then, B#^τδH is a coquasitriangular Hopf algebra under certain conditions. This coquasitriangular Hopf algerbra generalizes some known cross products. Finally, as an application, an explicit example is given.