The distribution of shear stress on the cross-section of plastic metal solid circular shaft under pure torsion yielding, the applicability of complete plastic model assumption and the shear stress formula were researc...The distribution of shear stress on the cross-section of plastic metal solid circular shaft under pure torsion yielding, the applicability of complete plastic model assumption and the shear stress formula were researched. Based on the shear stress formula of circular shaft under pure torsion in elastic stage, the formula of torque in elastic stage and the definition of yield, it is obtained that the yielding stage of plastic metal shaft under pure torsion is only a surface phenomenon of torque-torsion angle relationship, and the distribution of shear stress is essentially different from that of tensile stress when yielding under uniaxial tension. The pure torsion platform-torsion angle and the shape of torque-torsion angle curve cannot change the distribution of shear stress on the shaft cross-section. The distribution of shear stress is still linear with the maximum shear stress ts. The complete plasticity model assumption is not in accordance with the actual situation of shaft under torsion. The experimental strength data of nine plastic metals are consistent with the calculated results of the new limiting strain energy strength theory (LSEST). The traditional yield stress formula for plastic shaft under torsion is reasonable. The shear stress formula based on the plane assumption in material mechanics is applicable for all loaded stages of torsion shaft.展开更多
The stickiness effect suffered by chaotic orbits diffusing in the phase space of a dynamical system is studied in this paper.Previous works have shown that the hyperbolic structures in the phase space play an essentia...The stickiness effect suffered by chaotic orbits diffusing in the phase space of a dynamical system is studied in this paper.Previous works have shown that the hyperbolic structures in the phase space play an essential role in causing the stickiness effect.We present in this paper the relationship between the stickiness effect and the geometric property of hyperbolic structures.Using a two-dimensional area-preserving twist mapping as the model,we develop the numerical algorithms for computing the positions of the hyperbolic periodic orbits and for calculating the angle between the stable and unstable manifolds of the hyperbolic periodic orbit.We show how the stickiness effect and the orbital diffusion speed are related to the angle.展开更多
文摘The distribution of shear stress on the cross-section of plastic metal solid circular shaft under pure torsion yielding, the applicability of complete plastic model assumption and the shear stress formula were researched. Based on the shear stress formula of circular shaft under pure torsion in elastic stage, the formula of torque in elastic stage and the definition of yield, it is obtained that the yielding stage of plastic metal shaft under pure torsion is only a surface phenomenon of torque-torsion angle relationship, and the distribution of shear stress is essentially different from that of tensile stress when yielding under uniaxial tension. The pure torsion platform-torsion angle and the shape of torque-torsion angle curve cannot change the distribution of shear stress on the shaft cross-section. The distribution of shear stress is still linear with the maximum shear stress ts. The complete plasticity model assumption is not in accordance with the actual situation of shaft under torsion. The experimental strength data of nine plastic metals are consistent with the calculated results of the new limiting strain energy strength theory (LSEST). The traditional yield stress formula for plastic shaft under torsion is reasonable. The shear stress formula based on the plane assumption in material mechanics is applicable for all loaded stages of torsion shaft.
基金supported by the National Natural Science Foundation of China(Grant Nos.11073012,11078001 and 11003008)the Qing Lan Project(Jiangsu Province)the National Basic Research Program of China(Grant Nos.2013CB834103 and 2013CB834904)
文摘The stickiness effect suffered by chaotic orbits diffusing in the phase space of a dynamical system is studied in this paper.Previous works have shown that the hyperbolic structures in the phase space play an essential role in causing the stickiness effect.We present in this paper the relationship between the stickiness effect and the geometric property of hyperbolic structures.Using a two-dimensional area-preserving twist mapping as the model,we develop the numerical algorithms for computing the positions of the hyperbolic periodic orbits and for calculating the angle between the stable and unstable manifolds of the hyperbolic periodic orbit.We show how the stickiness effect and the orbital diffusion speed are related to the angle.