Nonlinear development of salinity perturbations in the Atlantic thermohaline circulation(THC) is investigated with a three-dimensional ocean circulation model,using the conditional nonlinear optimal perturbation metho...Nonlinear development of salinity perturbations in the Atlantic thermohaline circulation(THC) is investigated with a three-dimensional ocean circulation model,using the conditional nonlinear optimal perturbation method.The results show two types of optimal initial perturbations of sea surface salinity,one associated with freshwater and the other with salinity.Both types of perturbations excite decadal variability of the THC.Under the same amplitude of initial perturbation,the decadal variation induced by the freshwater perturbation is much stronger than that by the salinity perturbation,suggesting that the THC is more sensitive to freshwater than salinity perturbation.As the amplitude of initial perturbation increases,the decadal variations become stronger for both perturbations.For salinity perturbations,recovery time of the THC to return to steady state gradually saturates with increasing amplitude,whereas this recovery time increases remarkably for freshwater perturbations.A nonlinear(advective) feedback between density and velocity anomalies is proposed to explain these characteristics of decadal variability excitation.The results are consistent with previous ones from simple box models,and highlight the importance of nonlinear feedback in decadal THC variability.展开更多
The perturbed boundary undercurrent is an exceptional event in the tropical atmosphere and ocean. It is a complicated nonlinear system. Its appearance badly affects not only natural conditions such as climate and envi...The perturbed boundary undercurrent is an exceptional event in the tropical atmosphere and ocean. It is a complicated nonlinear system. Its appearance badly affects not only natural conditions such as climate and environment, but also global economic development and human living, and brings about many calamities. Thus there is very attractive study on its rules in the international academic circles. Many scholars made more studies on its local and whole behaviors using different methods, such as self-anamnestic principle, Fokker-Plank Equation method, higher order singular pedigree and predictable study, rapid change on boundary, indeterminate adaptive control, multi-eogradient method and so on. Nonlinear perturbed theory and approximate method are very attractive studies in the international academic circles. Many scholars considered a class of nonlinear problems for the ordinary differential equation, the reaction diffusion equations, the boundary value of elliptic equation, the initial boundary value of hyperbolic equation, the shock layer solution of nonlinear equation and so on. In this paper, a class of perturbed mechanism for the western boundary undercurrents in the equator Pacific is considered. Under suitable conditions, using a homotopic mapping theory and method, we obtain a simple and rapid arbitrary order approximate solution for the corresponding nonlinear system. For example, a special case shows that using the homotopic mapping method, there is a high accuracy for the computed value. It is also provided from the results that the solution for homotopic mapping solving method can be used for analyzing operator for perturbed mechanism of western boundary undercurrents in the equator Pacific.展开更多
The Brazilian coast is characterized by different tidal regimes and distinct meteorological influences. The northern part has larger tidal amplitudes and is permanently affected by trade winds and tropical disturbance...The Brazilian coast is characterized by different tidal regimes and distinct meteorological influences. The northern part has larger tidal amplitudes and is permanently affected by trade winds and tropical disturbances; the southern portion has smaller tidal amplitudes and is frequently influenced by extratropical cyclone activity. Besides these aspects, many features regarding current structure and behavior are also present, such as the equatorial system of currents, the subtropical gyre and the corresponding western boundary currents, and the Brazil-Malvinas confluence region. Within this context, efforts were made to develop the BRAZCOAST system, capable of describing the processes that determine the oceanic circulation from large to coastal scales. A customized version of the Princeton Ocean Model(POM) was implemented in a basin-scale domain covering the whole of the tropical and southern Atlantic Ocean, with 0.5° spatial resolution, as well as three nested grids with(1/12)° resolution covering the different parts of the Brazilian shelf, in a one-way procedure. POM was modified to include tidal potential generator terms and a partially-clamped boundary condition for tidal elevations. The coarse grid captured large-scale features, while the nested grids detailed local circulations affected by bathymetry and coastal restrictions. An interesting aspect at the coarse grid level was the relevance of the Weddell Sea to the location of the tidal amphidromic systems.展开更多
A generalized wave-activity density, which is defined as an absolute value of production of three-dimensional vorticity vector perturbation and gradient of general potential temperature perturbation, is introduced and...A generalized wave-activity density, which is defined as an absolute value of production of three-dimensional vorticity vector perturbation and gradient of general potential temperature perturbation, is introduced and its wave-activity law is derived in Cartesian coordinates. Constructed in an agoestrophic and nonhydrostatie dynamical framework, the generalized wave-activity law may be applicable to diagnose mesoscale weather systems leading to heavy rainfall. The generalized wave-activity density and wave-activity flux divergence were calculated with the objective analysis data to investigate the character of wave activity over heavy-rainfall regions. The primary dynamical processes responsible for disturbance associated with heavy rainfall were also analyzed. It was shown that the generalized wave-activity density was closely correlated to the observed 6-h accumulative rainfall. This indicated that the wave activity or disturbance was evident over the frontal and landfall-typhoon heavy-rainfall regions in middle and lower troposphere. For the landfall-typhoon rainband, the portion of generalized wave-activity flux divergence, denoting the interaction between the basic-state cyclonic circulation of landfall typhoon and mesoscale waves, was the primary dynamic process responsible for the evolution of generalized wave-activity density.展开更多
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB417404)
文摘Nonlinear development of salinity perturbations in the Atlantic thermohaline circulation(THC) is investigated with a three-dimensional ocean circulation model,using the conditional nonlinear optimal perturbation method.The results show two types of optimal initial perturbations of sea surface salinity,one associated with freshwater and the other with salinity.Both types of perturbations excite decadal variability of the THC.Under the same amplitude of initial perturbation,the decadal variation induced by the freshwater perturbation is much stronger than that by the salinity perturbation,suggesting that the THC is more sensitive to freshwater than salinity perturbation.As the amplitude of initial perturbation increases,the decadal variations become stronger for both perturbations.For salinity perturbations,recovery time of the THC to return to steady state gradually saturates with increasing amplitude,whereas this recovery time increases remarkably for freshwater perturbations.A nonlinear(advective) feedback between density and velocity anomalies is proposed to explain these characteristics of decadal variability excitation.The results are consistent with previous ones from simple box models,and highlight the importance of nonlinear feedback in decadal THC variability.
基金Under the auspices of the National Natural Science Foundation of China (No. 40576012, No. 40676016, No. 10471039), the State Key Program for Basic Research of China (No. 2003CB415101-03, No. 2004CB418304), the Key Project of the Chinese Academy of Sciences (No. KZCX3-SW-221), E-Institutes of Shanghai Municipal Education Commission (No. N.E03004)
文摘The perturbed boundary undercurrent is an exceptional event in the tropical atmosphere and ocean. It is a complicated nonlinear system. Its appearance badly affects not only natural conditions such as climate and environment, but also global economic development and human living, and brings about many calamities. Thus there is very attractive study on its rules in the international academic circles. Many scholars made more studies on its local and whole behaviors using different methods, such as self-anamnestic principle, Fokker-Plank Equation method, higher order singular pedigree and predictable study, rapid change on boundary, indeterminate adaptive control, multi-eogradient method and so on. Nonlinear perturbed theory and approximate method are very attractive studies in the international academic circles. Many scholars considered a class of nonlinear problems for the ordinary differential equation, the reaction diffusion equations, the boundary value of elliptic equation, the initial boundary value of hyperbolic equation, the shock layer solution of nonlinear equation and so on. In this paper, a class of perturbed mechanism for the western boundary undercurrents in the equator Pacific is considered. Under suitable conditions, using a homotopic mapping theory and method, we obtain a simple and rapid arbitrary order approximate solution for the corresponding nonlinear system. For example, a special case shows that using the homotopic mapping method, there is a high accuracy for the computed value. It is also provided from the results that the solution for homotopic mapping solving method can be used for analyzing operator for perturbed mechanism of western boundary undercurrents in the equator Pacific.
基金the Brazilian agencies FAPESP (Sao Paulo State Research Agency) and CNPq (National Council for Scientific and Technological Development) for funding throughout the development of this work
文摘The Brazilian coast is characterized by different tidal regimes and distinct meteorological influences. The northern part has larger tidal amplitudes and is permanently affected by trade winds and tropical disturbances; the southern portion has smaller tidal amplitudes and is frequently influenced by extratropical cyclone activity. Besides these aspects, many features regarding current structure and behavior are also present, such as the equatorial system of currents, the subtropical gyre and the corresponding western boundary currents, and the Brazil-Malvinas confluence region. Within this context, efforts were made to develop the BRAZCOAST system, capable of describing the processes that determine the oceanic circulation from large to coastal scales. A customized version of the Princeton Ocean Model(POM) was implemented in a basin-scale domain covering the whole of the tropical and southern Atlantic Ocean, with 0.5° spatial resolution, as well as three nested grids with(1/12)° resolution covering the different parts of the Brazilian shelf, in a one-way procedure. POM was modified to include tidal potential generator terms and a partially-clamped boundary condition for tidal elevations. The coarse grid captured large-scale features, while the nested grids detailed local circulations affected by bathymetry and coastal restrictions. An interesting aspect at the coarse grid level was the relevance of the Weddell Sea to the location of the tidal amphidromic systems.
基金National Basic Research Program of China (2009CB421505)National Natural Sciences Foundations of China (40875032)
文摘A generalized wave-activity density, which is defined as an absolute value of production of three-dimensional vorticity vector perturbation and gradient of general potential temperature perturbation, is introduced and its wave-activity law is derived in Cartesian coordinates. Constructed in an agoestrophic and nonhydrostatie dynamical framework, the generalized wave-activity law may be applicable to diagnose mesoscale weather systems leading to heavy rainfall. The generalized wave-activity density and wave-activity flux divergence were calculated with the objective analysis data to investigate the character of wave activity over heavy-rainfall regions. The primary dynamical processes responsible for disturbance associated with heavy rainfall were also analyzed. It was shown that the generalized wave-activity density was closely correlated to the observed 6-h accumulative rainfall. This indicated that the wave activity or disturbance was evident over the frontal and landfall-typhoon heavy-rainfall regions in middle and lower troposphere. For the landfall-typhoon rainband, the portion of generalized wave-activity flux divergence, denoting the interaction between the basic-state cyclonic circulation of landfall typhoon and mesoscale waves, was the primary dynamic process responsible for the evolution of generalized wave-activity density.