It is the fact that several process parameters are either unknown or uncertain. Therefore, an optimal control, profile calculated with developed process models with respect to such process parameters may not give an o...It is the fact that several process parameters are either unknown or uncertain. Therefore, an optimal control, profile calculated with developed process models with respect to such process parameters may not give an optimal performance when implemented to real processes. This study proposes a batch-to-batch optimization strategy for the estimation of uncertain kinetic.par.ameters in a batch crystallization process of potassium sulfate production. The knowledge of a crystal size distribution of the product at the end of batch operation is used in the proposed methodology. The updated kinetic parameters are applied for determining an optimal operating temperature policy for the next batch run.展开更多
Rhamnolipid production by Pseudomonas aeruginosa ATCC 9027 with waste frying oil as sole carbon source was studied using response surface method. Cultures were incubated in shaking flask with temperature, NO3- and Mg2...Rhamnolipid production by Pseudomonas aeruginosa ATCC 9027 with waste frying oil as sole carbon source was studied using response surface method. Cultures were incubated in shaking flask with temperature, NO3- and Mg2+ concentrations as the variables. Meanwhile, fed-batch fermentation experiments were conducted. The results show that the three variables are closely related to rhamnolipid production. The optimal cultivation conditions are of 6.4 g/L NaNO3 , 3.1 g/L MgSO4 at 32 ℃, with the maximum rhamnolipid production of 6.6 g/L. The results of fed-batch fermentation experiments show that feeding the oil in two batches can enhance rhamnolipid production. The best time interval is 72 h with the maximum rhamnolipid production of 8.5 g/L. The data are potentially useful for mass production of rhamnolipid on oil waste with this bacterium.展开更多
An iterative optimization strategy for fed-batch fermentation process is presented by combining a run-to-run optimization with swarm energy conservation particle swarm optimization (SEC-PSO). SEC-PSO, which is designe...An iterative optimization strategy for fed-batch fermentation process is presented by combining a run-to-run optimization with swarm energy conservation particle swarm optimization (SEC-PSO). SEC-PSO, which is designed with the concept of energy conservation, can solve the problem of premature convergence frequently appeared in standard PSO algorithm by partitioning its population into several sub-swarms according to the energy of the swarm and is used in the optimization strategy for parameter identification and operation condition optimization. The run-to-run optimization exploits the repetitive nature of fed-batch processes in order to deal with the optimal problems of fed-batch fermentation process with inaccurate process model and unsteady process state. The kinetic model parameters, used in the operation condition optimization of the next run, are adjusted by calculating time-series data obtained from real fed-batch process in the run-to-run optimization. The simulation results show that the strategy can adjust its kinetic model dynamically and overcome the instability of fed-batch process effectively. Run-to-run strategy with SEC-PSO provides an effective method for optimization of fed-batch fermentation process.展开更多
The present paper is devoted to the research of controlled queueing models at control of CBSMAP (Controlled Batch Semi-Markov Arrival Process). The control is based on the theory of controlled semi-markov processes ...The present paper is devoted to the research of controlled queueing models at control of CBSMAP (Controlled Batch Semi-Markov Arrival Process). The control is based on the theory of controlled semi-markov processes for system optimization. The control is carried out using a type of the next batch and moments of batch arrivals.展开更多
In order to study the capacitated lot sizing problem for a supply chain of corporate multi-location factories to minimize the total costs of production, inventory and transportation under the system capacity restricti...In order to study the capacitated lot sizing problem for a supply chain of corporate multi-location factories to minimize the total costs of production, inventory and transportation under the system capacity restriction and product due date, while at the same time considering the menu distributed balance, the mathematical programming models are decomposed and reduced from the 3 levels into 2 levels according to the idea of just-in-time production. In order to overcome the premature convergence of ACA (ant colony algorithms), the idea of mute operation is adopted in genetic algorithms and a PACA (parallel ant colony algorithms) is proposed for supply chain optimization. Finally, an illustrative example is given, and a comparison is made with standard BAB (Branch and Bound) and PACA approach. The result shows that the latter is more effective and promising.展开更多
Molybdenum disulfide(MoS2) has attracted extensive attention as an alternative to replace noble electrocatalysts in the hydrogen evolution reaction(HER). Here, we highlight an efficient and straightforward ball mi...Molybdenum disulfide(MoS2) has attracted extensive attention as an alternative to replace noble electrocatalysts in the hydrogen evolution reaction(HER). Here, we highlight an efficient and straightforward ball milling method,using nanoscale Cu powders as reductant to reduce MoS2 engineering S-vacancies into MoS2 surfaces, to fabricate a defectrich MoS2material(DR-MoS2). The micron-sized DR-MoS2 catalysts exhibit significantly enhanced catalytic activity for HER with an overpotential(at 10 mA cm^-2) of 176 m V in acidic media and 189 m V in basic media, surpassing most of Mo-based catalysts previously reported, especially in basic solution. Meanwhile stability tests confirm the outstanding durability of DR-MoS2 catalysts in both acid and basic electrolytes. This work not only opens a new pathway to implant defects to MoS2, but also provides low-cost alternative for efficient electrocatalytic production of hydrogen in both alkaline and acidic environments.展开更多
文摘It is the fact that several process parameters are either unknown or uncertain. Therefore, an optimal control, profile calculated with developed process models with respect to such process parameters may not give an optimal performance when implemented to real processes. This study proposes a batch-to-batch optimization strategy for the estimation of uncertain kinetic.par.ameters in a batch crystallization process of potassium sulfate production. The knowledge of a crystal size distribution of the product at the end of batch operation is used in the proposed methodology. The updated kinetic parameters are applied for determining an optimal operating temperature policy for the next batch run.
基金Project(108100) supported by the Key Program for Science and Technology Research of Ministry of Education of ChinaProjects(50978087, 50908081) supported by the National Natural Science Foundation of China+1 种基金Project(531107011019) supported by the Hunan University Graduate Education Innovation Program, ChinaProject(CX2010B157) supported by the Hunan Provincial Innovation Foundation for Postgraduate students, China
文摘Rhamnolipid production by Pseudomonas aeruginosa ATCC 9027 with waste frying oil as sole carbon source was studied using response surface method. Cultures were incubated in shaking flask with temperature, NO3- and Mg2+ concentrations as the variables. Meanwhile, fed-batch fermentation experiments were conducted. The results show that the three variables are closely related to rhamnolipid production. The optimal cultivation conditions are of 6.4 g/L NaNO3 , 3.1 g/L MgSO4 at 32 ℃, with the maximum rhamnolipid production of 6.6 g/L. The results of fed-batch fermentation experiments show that feeding the oil in two batches can enhance rhamnolipid production. The best time interval is 72 h with the maximum rhamnolipid production of 8.5 g/L. The data are potentially useful for mass production of rhamnolipid on oil waste with this bacterium.
基金Supported by the National Natural Science Foundation of China (20676013)
文摘An iterative optimization strategy for fed-batch fermentation process is presented by combining a run-to-run optimization with swarm energy conservation particle swarm optimization (SEC-PSO). SEC-PSO, which is designed with the concept of energy conservation, can solve the problem of premature convergence frequently appeared in standard PSO algorithm by partitioning its population into several sub-swarms according to the energy of the swarm and is used in the optimization strategy for parameter identification and operation condition optimization. The run-to-run optimization exploits the repetitive nature of fed-batch processes in order to deal with the optimal problems of fed-batch fermentation process with inaccurate process model and unsteady process state. The kinetic model parameters, used in the operation condition optimization of the next run, are adjusted by calculating time-series data obtained from real fed-batch process in the run-to-run optimization. The simulation results show that the strategy can adjust its kinetic model dynamically and overcome the instability of fed-batch process effectively. Run-to-run strategy with SEC-PSO provides an effective method for optimization of fed-batch fermentation process.
文摘The present paper is devoted to the research of controlled queueing models at control of CBSMAP (Controlled Batch Semi-Markov Arrival Process). The control is based on the theory of controlled semi-markov processes for system optimization. The control is carried out using a type of the next batch and moments of batch arrivals.
文摘In order to study the capacitated lot sizing problem for a supply chain of corporate multi-location factories to minimize the total costs of production, inventory and transportation under the system capacity restriction and product due date, while at the same time considering the menu distributed balance, the mathematical programming models are decomposed and reduced from the 3 levels into 2 levels according to the idea of just-in-time production. In order to overcome the premature convergence of ACA (ant colony algorithms), the idea of mute operation is adopted in genetic algorithms and a PACA (parallel ant colony algorithms) is proposed for supply chain optimization. Finally, an illustrative example is given, and a comparison is made with standard BAB (Branch and Bound) and PACA approach. The result shows that the latter is more effective and promising.
基金supported by the National Basic Research of China (2015CB932500 and 2013CB632702)the National Natural Science Fundation of China (51302141, 51501008, U1560103 and 61274015)
文摘Molybdenum disulfide(MoS2) has attracted extensive attention as an alternative to replace noble electrocatalysts in the hydrogen evolution reaction(HER). Here, we highlight an efficient and straightforward ball milling method,using nanoscale Cu powders as reductant to reduce MoS2 engineering S-vacancies into MoS2 surfaces, to fabricate a defectrich MoS2material(DR-MoS2). The micron-sized DR-MoS2 catalysts exhibit significantly enhanced catalytic activity for HER with an overpotential(at 10 mA cm^-2) of 176 m V in acidic media and 189 m V in basic media, surpassing most of Mo-based catalysts previously reported, especially in basic solution. Meanwhile stability tests confirm the outstanding durability of DR-MoS2 catalysts in both acid and basic electrolytes. This work not only opens a new pathway to implant defects to MoS2, but also provides low-cost alternative for efficient electrocatalytic production of hydrogen in both alkaline and acidic environments.