In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confine...In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality.展开更多
By analyzing the existing methods for the bridge bearing capacity assessment, an analytic hierarchy pro cess estimation model with a variable weight and fuzzy description is proposed based on the nondestructive infor ...By analyzing the existing methods for the bridge bearing capacity assessment, an analytic hierarchy pro cess estimation model with a variable weight and fuzzy description is proposed based on the nondestructive infor mation. Considering the actual strength, the bearing capacity is first calculated from its design state, and then modified based on the detection information. The modification includes the section reduction and the structure deterioration. The section reduction involves the concrete section and the steel cross-section reduction. The structure deterioration is decided by six factors, i.e. , the concrete surface damage, the actual concrete strength, the steel corrosion electric potential, the chloride ion content, the carbonization depth, and the protective layer depth. The initial weight of each factor is calculated by the expert judgment matrix using an analytic hierarchy process. The consistency approximation and the error transfer theory are used. Then, the variable weight is in- troduced to expand the influences of factors in the worse state. Finally, an actual bridge is taken as an example to verify the proposed method. Results show that the estimated capacity agrees well with that of the load test, thus the method is objective and credible展开更多
Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of ...Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of shallow strips and circular plate anchors in multi-layered soils.The nonlinear strength criterion and non-associated flow rule of geotechnical materials were introduced to investigate the influence of nonuniformity on the pullout performance and failure mechanism of shallow plate anchors.The expressions of the detaching curves or surfaces were obtained to reflect the failure mechanism,which can be used to figure out the ultimate uplift capacity and failure range.The results are generally in agreement with the numerical simulations and previous research.The effects of various parameters on the ultimate uplift capacity and failure mechanism of plate anchors in multi-layered soils were investigated,and it is found that the ultimate uplift capacity and failure range of shallow anchors increase with the increase of initial cohesion and dilatancy coefficient,but decrease with the unit weight,axial tensile stress and nonlinear coefficient.展开更多
Aiming at the difficulty in stress analysis for strata under pillars with actual bearing conditions, an approach was proposed to apply multi-sectional linear approximation to the characteristic curves of pillar loads,...Aiming at the difficulty in stress analysis for strata under pillars with actual bearing conditions, an approach was proposed to apply multi-sectional linear approximation to the characteristic curves of pillar loads, and stress of strata was calculated under pillars with linear load by calculation method for uniform load. This approach leads to a rapid analyzing method for strata stress under pillars with any form of loads. Through theoretical analysis, strata stress expressions for pillars under linear bearing conditions are obtained. In addition, two concepts, stress increase factor and stress factor, are proposed for the approximate analysis of strata stress by uniform load approximation method. It is also found that the stress increase factor of strata is related to the strata stress factor and the ratio of the minimum load on the pillar' two ends to the maximum one; and the distribution features of stress factors and the sizes of their influencing areas in strata influenced by overlying pillars are obtained. Combining with the gob pillar conditions of Jurassic coal seam in Tongxin Coal Mine, it is demonstrated that the results obtained by stress distribution analysis of the strata stress in non-influencing areas of pillars with linear bearing through uniform load approximation are in basic accordance with the results obtained for pillars under linear bearing condition. Therefore, it is feasible and accurate to calculate stress in non-influencing area in strata under pillars with linear bearing condition by uniform load calculation method.展开更多
The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-s...The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-softening, ideal elasto-plastic and work-hardening, a universal tri-linear load transfer model is suggested for the development of side and tip resistance by various types of soil (rock) with the consideration of sediment at the bottom of the pile. Based on the model, a formula is derived for the relationship between the settlement and load on the pile top to determine the vertical bearing capacity, taking into account such factors as the characteristics of the stratum, the side resistance along the shaft, and tip resistance under the pile tip. A close agreement of the calculated results with the measured data from a field test pile lends confidence to the future application of the present approach in engineering practice.展开更多
In order to find out the bearing behavior of super-long piles located in deep soft clay over stiff layers around Dongting Lake, China, a test pile was first designed with the field loading test finished afterward. Bas...In order to find out the bearing behavior of super-long piles located in deep soft clay over stiff layers around Dongting Lake, China, a test pile was first designed with the field loading test finished afterward. Based on the measured test results, load transfer mechanism and bearing behavior of the pile shaft were discussed in detail. Then, by introducing a bi-linear model for shaft friction and the tri-linear model for pile tip resistance, respectively, the governing differential equation of pile soil system was set up by the load transfer method with the analytical solutions derived as well, taking into account the effect by stratified feature and various bearing conditions of subsoil, material nonlinearity, and the sediment under pile tip. Furthermore, formulas to determine the axial capacity of super-long piles by the pile top settlement were advised and applied to analyze the test pile. Good agreement between the predicted load settlement variations and the measured data is obtained to verify the validity of the present method. The results also show that, the axial bearing capacity of super-long piles should be controlled by the allowable pile top settlement, and buckling stability of the pile shaft should be paid attention as well.展开更多
We tested for fourteen trace elements in samples collected from the Ordovician strata in Datun coal field. The vertical concentration variation of these trace dements is reported. The relationship of the variation to ...We tested for fourteen trace elements in samples collected from the Ordovician strata in Datun coal field. The vertical concentration variation of these trace dements is reported. The relationship of the variation to the water-bearing capacity of the Ordovician strata is discussed. The minimum concentration of eleven (of 14 total) trace elements appears in the lower Majiagou formation. The maximum concentrations mainly appear in the Badou and Jiawang formations: eight maxima are located in Badou and four more are in Jiawang. The study of karst development and the water-bearing capacity of Ordovician strata shows that karst is well developed in the Majiagou formation and there is a consequent high water-bearing capacity in this formation: Badou and Jiawang formations are contrary to this situation. The results illustrate that the minimum concentrations of most trace elements within certain Ordovician formations can be taken as strong evidence for the existence of a well developed karst and a high water-bearing capacity.展开更多
Construction of tunnels in urban areas requires assessment of the impact of tunneling on the stability and integrity of existing pile foundations. We have focused our attention to the analysis of the carrying capacity...Construction of tunnels in urban areas requires assessment of the impact of tunneling on the stability and integrity of existing pile foundations. We have focused our attention to the analysis of the carrying capacity of pile foundations provided by the impact of construction of urban tunnels on adjacent pile foundations, under the engineering background of the construction of the # 2 Line of the Guangzhou subway. It is carried out using a fast Lagrangian analysis of a continuum in a 3D numerical code, which is an elastoplastic three-dimensional finite difference model, to simulate the response of piles under the entire process of metro tunneling (deactivation of soil element and activation of the lining). The adjacent stratum around the tunnel is classified into three regions: Zone Ⅰ (upper adjacent stratum of tunnel), Zone Ⅱ (45°-upper-lateral adjacent stratum of tunnel) and Zone Ⅲ (lateral adjacent stratum of tunnel). In each region one typical pile is chosen to be calculated and analyzed in detail. Numerical simulations are mainly conducted at three points of each pile shaft: the side-friction force of the pile, the tip resistance of the pile and the axial loading of the pile. A contrasting analysis has been conducted both in the response of typical piles in different regions and from computer calculated values with site monitoring values. The results of numerical simulations show that the impact on carrying capacity of the piles lies mainly in the impact of construction of urban tunnels on the side-friction forces and the tip resistance of piles. The impact differs considerably among the different strata zones where the pile tips are located. The complicated rules of side-friction force and tip resistance of piles has resulted in complicated rules of pile axial loading thus, in the end, it impacts the carrying capacity of pile-foundations. It is necessary to take positive measures, such as stratum grouting stabilization or foundation underpinning, etc, to deal with the carrying capacity and the settlement of pile-foundations. The results are of value to similar engineering projects.展开更多
This paper describes a specific case of mining in a water-rich coal seam in western China. Water inrushes,roof caving and other disasters induced by intensive mining operation could pose great threats to the safety of...This paper describes a specific case of mining in a water-rich coal seam in western China. Water inrushes,roof caving and other disasters induced by intensive mining operation could pose great threats to the safety of coal mines. The strata behavior during the high-intensity extraction in the water-rich coal seam is analyzed by employing the numerical simulation method and in situ monitoring. The results show that about 10 m ahead of the workface, the front abutment pressure peaks is at 34.13 MPa, while the peak of the side abutment pressure is located about 8 m away from the gateway with the value of 12.41 MPa; the height of the fracture zone, the first weighting step and the cycle weighting step are calculated to be 45,50 and 20.8 m, respectively; pressure distribution in the workface is characterized by that the vertical pressure in the center occurs earlier and is stronger than those on both ends. Then, the results above are verified by in situ measurement, which may provide a basis for safe mining under similar conditions.展开更多
In practical design,the joints with outer stiffening ring were used to connect concrete beams and laminated steel tube columns.The seismic behavior of joints with outer stiffening ring with various types was studied b...In practical design,the joints with outer stiffening ring were used to connect concrete beams and laminated steel tube columns.The seismic behavior of joints with outer stiffening ring with various types was studied based on experiments.The bearing capacity,rigidity,ductility,energy dissipation capacity,deformation property and strain distribution of the joints with outer stiffening ring with various types were comprehensively evaluated based on the test results of three specimens under quasistatic cyclic loading and finite element analysis.The test results showed that the failure mode,hysteretic behavior,bearing capacity and rigidity degradation of the joints with outer stiffening ring with various types were nearly identical.Furthermore,the strain distribution of the outer stiffening ring of the three joints was nearly the same.The detailing recommendation for the outer strengthening rings was proposed for the concrete beam-laminated steel tube column joints with outer stiffening ring,in order to ensure the good seismic capacity of the joints.展开更多
Composite slabs with profiled steel sheet are widely applied in practical structures now. Plenty of literatures can be available about simply supported composite slabs with single span. However, continuous slabs alway...Composite slabs with profiled steel sheet are widely applied in practical structures now. Plenty of literatures can be available about simply supported composite slabs with single span. However, continuous slabs always exist in high-rise building structures. In order to obtain the ultimate loading capacity of continuous composite slabs, the full scale test on slab specimens with high cost need to be carried out. This paper presented an analytical model for calculating the ultimate loading capacity of continuous composite slabs. Only the small-scale slide block test needed to be carried out for determining some mechanical parameters, resulting in less cost, compared with the conventional m-k test method. Various load conditions and parameters were considered in the analytical model. The comparison between test results and predicted results showed that the proposed method had enough precision. Furthermore, the simplified method was also proposed for practical design.展开更多
基金Project(ZDRW-ZS-2021-3)supported by the Key Deployment Projects of Chinese Academy of SciencesProjects(52179116,51991392)supported by the National Natural Science Foundation of China。
文摘In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality.
基金Supported by the Jiangshu Province Communication Scientific Research Project(06Y21)Zhejiang Province Road Scientific Research Project(2007-013-11L)~~
文摘By analyzing the existing methods for the bridge bearing capacity assessment, an analytic hierarchy pro cess estimation model with a variable weight and fuzzy description is proposed based on the nondestructive infor mation. Considering the actual strength, the bearing capacity is first calculated from its design state, and then modified based on the detection information. The modification includes the section reduction and the structure deterioration. The section reduction involves the concrete section and the steel cross-section reduction. The structure deterioration is decided by six factors, i.e. , the concrete surface damage, the actual concrete strength, the steel corrosion electric potential, the chloride ion content, the carbonization depth, and the protective layer depth. The initial weight of each factor is calculated by the expert judgment matrix using an analytic hierarchy process. The consistency approximation and the error transfer theory are used. Then, the variable weight is in- troduced to expand the influences of factors in the worse state. Finally, an actual bridge is taken as an example to verify the proposed method. Results show that the estimated capacity agrees well with that of the load test, thus the method is objective and credible
基金Project(51874202) supported by the National Natural Science Foundation of ChinaProject(2017JQ0003) supported by the Sichuan Youth Fund,China。
文摘Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of shallow strips and circular plate anchors in multi-layered soils.The nonlinear strength criterion and non-associated flow rule of geotechnical materials were introduced to investigate the influence of nonuniformity on the pullout performance and failure mechanism of shallow plate anchors.The expressions of the detaching curves or surfaces were obtained to reflect the failure mechanism,which can be used to figure out the ultimate uplift capacity and failure range.The results are generally in agreement with the numerical simulations and previous research.The effects of various parameters on the ultimate uplift capacity and failure mechanism of plate anchors in multi-layered soils were investigated,and it is found that the ultimate uplift capacity and failure range of shallow anchors increase with the increase of initial cohesion and dilatancy coefficient,but decrease with the unit weight,axial tensile stress and nonlinear coefficient.
基金Project(51174192) supported by the National Natural Science Foundation of ChinaProject(BRA2010024) supported by"333"Training Foundation of Jiangsu Province,ChinaProject(CXLX12_0964) supported by Innovation Project of Graduate Students Training of Jiangsu Province,China
文摘Aiming at the difficulty in stress analysis for strata under pillars with actual bearing conditions, an approach was proposed to apply multi-sectional linear approximation to the characteristic curves of pillar loads, and stress of strata was calculated under pillars with linear load by calculation method for uniform load. This approach leads to a rapid analyzing method for strata stress under pillars with any form of loads. Through theoretical analysis, strata stress expressions for pillars under linear bearing conditions are obtained. In addition, two concepts, stress increase factor and stress factor, are proposed for the approximate analysis of strata stress by uniform load approximation method. It is also found that the stress increase factor of strata is related to the strata stress factor and the ratio of the minimum load on the pillar' two ends to the maximum one; and the distribution features of stress factors and the sizes of their influencing areas in strata influenced by overlying pillars are obtained. Combining with the gob pillar conditions of Jurassic coal seam in Tongxin Coal Mine, it is demonstrated that the results obtained by stress distribution analysis of the strata stress in non-influencing areas of pillars with linear bearing through uniform load approximation are in basic accordance with the results obtained for pillars under linear bearing condition. Therefore, it is feasible and accurate to calculate stress in non-influencing area in strata under pillars with linear bearing condition by uniform load calculation method.
文摘The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-softening, ideal elasto-plastic and work-hardening, a universal tri-linear load transfer model is suggested for the development of side and tip resistance by various types of soil (rock) with the consideration of sediment at the bottom of the pile. Based on the model, a formula is derived for the relationship between the settlement and load on the pile top to determine the vertical bearing capacity, taking into account such factors as the characteristics of the stratum, the side resistance along the shaft, and tip resistance under the pile tip. A close agreement of the calculated results with the measured data from a field test pile lends confidence to the future application of the present approach in engineering practice.
基金Project(50908084)supported by the National Natural Science Foundation of ChinaProject(200815)supported by the Transportation Science and Technology Program of Hunan Province,ChinaProject(531107040620)supported by the Growth Plan for Young Teachers of Hunan University,China
文摘In order to find out the bearing behavior of super-long piles located in deep soft clay over stiff layers around Dongting Lake, China, a test pile was first designed with the field loading test finished afterward. Based on the measured test results, load transfer mechanism and bearing behavior of the pile shaft were discussed in detail. Then, by introducing a bi-linear model for shaft friction and the tri-linear model for pile tip resistance, respectively, the governing differential equation of pile soil system was set up by the load transfer method with the analytical solutions derived as well, taking into account the effect by stratified feature and various bearing conditions of subsoil, material nonlinearity, and the sediment under pile tip. Furthermore, formulas to determine the axial capacity of super-long piles by the pile top settlement were advised and applied to analyze the test pile. Good agreement between the predicted load settlement variations and the measured data is obtained to verify the validity of the present method. The results also show that, the axial bearing capacity of super-long piles should be controlled by the allowable pile top settlement, and buckling stability of the pile shaft should be paid attention as well.
文摘We tested for fourteen trace elements in samples collected from the Ordovician strata in Datun coal field. The vertical concentration variation of these trace dements is reported. The relationship of the variation to the water-bearing capacity of the Ordovician strata is discussed. The minimum concentration of eleven (of 14 total) trace elements appears in the lower Majiagou formation. The maximum concentrations mainly appear in the Badou and Jiawang formations: eight maxima are located in Badou and four more are in Jiawang. The study of karst development and the water-bearing capacity of Ordovician strata shows that karst is well developed in the Majiagou formation and there is a consequent high water-bearing capacity in this formation: Badou and Jiawang formations are contrary to this situation. The results illustrate that the minimum concentrations of most trace elements within certain Ordovician formations can be taken as strong evidence for the existence of a well developed karst and a high water-bearing capacity.
文摘Construction of tunnels in urban areas requires assessment of the impact of tunneling on the stability and integrity of existing pile foundations. We have focused our attention to the analysis of the carrying capacity of pile foundations provided by the impact of construction of urban tunnels on adjacent pile foundations, under the engineering background of the construction of the # 2 Line of the Guangzhou subway. It is carried out using a fast Lagrangian analysis of a continuum in a 3D numerical code, which is an elastoplastic three-dimensional finite difference model, to simulate the response of piles under the entire process of metro tunneling (deactivation of soil element and activation of the lining). The adjacent stratum around the tunnel is classified into three regions: Zone Ⅰ (upper adjacent stratum of tunnel), Zone Ⅱ (45°-upper-lateral adjacent stratum of tunnel) and Zone Ⅲ (lateral adjacent stratum of tunnel). In each region one typical pile is chosen to be calculated and analyzed in detail. Numerical simulations are mainly conducted at three points of each pile shaft: the side-friction force of the pile, the tip resistance of the pile and the axial loading of the pile. A contrasting analysis has been conducted both in the response of typical piles in different regions and from computer calculated values with site monitoring values. The results of numerical simulations show that the impact on carrying capacity of the piles lies mainly in the impact of construction of urban tunnels on the side-friction forces and the tip resistance of piles. The impact differs considerably among the different strata zones where the pile tips are located. The complicated rules of side-friction force and tip resistance of piles has resulted in complicated rules of pile axial loading thus, in the end, it impacts the carrying capacity of pile-foundations. It is necessary to take positive measures, such as stratum grouting stabilization or foundation underpinning, etc, to deal with the carrying capacity and the settlement of pile-foundations. The results are of value to similar engineering projects.
基金the National Basic Research Program of China (973 Program) under grant 2013CB227905
文摘This paper describes a specific case of mining in a water-rich coal seam in western China. Water inrushes,roof caving and other disasters induced by intensive mining operation could pose great threats to the safety of coal mines. The strata behavior during the high-intensity extraction in the water-rich coal seam is analyzed by employing the numerical simulation method and in situ monitoring. The results show that about 10 m ahead of the workface, the front abutment pressure peaks is at 34.13 MPa, while the peak of the side abutment pressure is located about 8 m away from the gateway with the value of 12.41 MPa; the height of the fracture zone, the first weighting step and the cycle weighting step are calculated to be 45,50 and 20.8 m, respectively; pressure distribution in the workface is characterized by that the vertical pressure in the center occurs earlier and is stronger than those on both ends. Then, the results above are verified by in situ measurement, which may provide a basis for safe mining under similar conditions.
基金supported by Twelfth"Five-Year"Plan Major Projects supported by the National Science and Technology Pillar Program of China(Grant No.2011BAJ09B01)Tsinghua University Initiative Scientific Research Program(Grant No.2010Z03078)
文摘In practical design,the joints with outer stiffening ring were used to connect concrete beams and laminated steel tube columns.The seismic behavior of joints with outer stiffening ring with various types was studied based on experiments.The bearing capacity,rigidity,ductility,energy dissipation capacity,deformation property and strain distribution of the joints with outer stiffening ring with various types were comprehensively evaluated based on the test results of three specimens under quasistatic cyclic loading and finite element analysis.The test results showed that the failure mode,hysteretic behavior,bearing capacity and rigidity degradation of the joints with outer stiffening ring with various types were nearly identical.Furthermore,the strain distribution of the outer stiffening ring of the three joints was nearly the same.The detailing recommendation for the outer strengthening rings was proposed for the concrete beam-laminated steel tube column joints with outer stiffening ring,in order to ensure the good seismic capacity of the joints.
文摘Composite slabs with profiled steel sheet are widely applied in practical structures now. Plenty of literatures can be available about simply supported composite slabs with single span. However, continuous slabs always exist in high-rise building structures. In order to obtain the ultimate loading capacity of continuous composite slabs, the full scale test on slab specimens with high cost need to be carried out. This paper presented an analytical model for calculating the ultimate loading capacity of continuous composite slabs. Only the small-scale slide block test needed to be carried out for determining some mechanical parameters, resulting in less cost, compared with the conventional m-k test method. Various load conditions and parameters were considered in the analytical model. The comparison between test results and predicted results showed that the proposed method had enough precision. Furthermore, the simplified method was also proposed for practical design.