To study load transfer mechanism and bearing capacity of a mixed pile with stiffness core (MPSC), which is formed by inserting a precast reinforced concrete pile (PRCP), in-situ tests involving MPSCs with differen...To study load transfer mechanism and bearing capacity of a mixed pile with stiffness core (MPSC), which is formed by inserting a precast reinforced concrete pile (PRCP), in-situ tests involving MPSCs with different lengths, diameters, water cement ratios and PRCPs, cement mixed piles, and drilling hole piles, were carried out. Limit bearing capacities, load-settlement curves and stress distribution of MPSCs and mixed piles were obtained. The load transfer between cement soil and PRCP was analyzed by finite element method (FEM). Test results and FEM analysis show that an MPSC has fully utilized the big friction from a cement mixed pile and the high compressive strength from a PRCP which transfers outer top load into the inner cement soil, and that inserting a PRCP into a mixed pile changes the stress distribution of a mixed pile and improves frictional resistance between a mixed pile and soil. The length and the section area on PRCP of an MPSC both have an optimum value. Adopting MPSC is effective in improving the bearing capacity of soft soil ground.展开更多
The front abutment pressure of a fully-mechanized workface of 11061 soft coal isolated island of Liangbei Coal Mine was measured and studied using a self-developed mining-induced stress monitoring system associated wi...The front abutment pressure of a fully-mechanized workface of 11061 soft coal isolated island of Liangbei Coal Mine was measured and studied using a self-developed mining-induced stress monitoring system associated with electromagnetic radiation technology, and the effects of abutment pressure distribution on strata behavior we discussed. The results indicate that the miningdnduced influencing distance advanced at the fully-mechanized working face of soft coal isolated island is larger than that at the gen- eral working face at the isolated island, besides the fracture zone in front of working face was widened to some extent, and the influencing range caused by relaxations on both roadways became bigger with the advancing working face. Moreover, it can be indicated that mining has significant effect on strata behav- ior of fully-mechanized working face of soft coal isolated island, which is mostly distributed in the area of stress concentration. The research results have an important reference value for revealing the distribution pattern of the front abutment pressure of a fully-mechanized working face of soft coal isolated island, and controlling the coal-rock dynamic disaster occurrence under similar mining conditions.展开更多
In order to obtain the distribution rules of abutment pressure around the 1151 (3) fully mechanized top-coal caving (FMTC) face of Xieqiao Colliery, the KSE-II-1 type bore-hole stress gauges were installed in the ...In order to obtain the distribution rules of abutment pressure around the 1151 (3) fully mechanized top-coal caving (FMTC) face of Xieqiao Colliery, the KSE-II-1 type bore-hole stress gauges were installed in the tailentry and headentry to measure the mining-induced stress. The distribution rules of the front and side abutment pressure were demonstrated. The results show that distribution rules of stress are obviously different in the vicinity of the face and entries. The peak value of abutment pressure in the protective coal pillar and face are located commonly in front of the working face along the strike, and they are located at the stress-decreased zone near the face. There is no stress peak value in the lateral coal mass beside the headentry in front of the face on the strike, and the peak value of abutment pressure appears at the rear area of the face. There are stress peak values both in the protective coal pillar and in the lateral coal mass beside the headentry to the dip.展开更多
基金Supported by National Natural Science Foundation of China( No. 59978028).
文摘To study load transfer mechanism and bearing capacity of a mixed pile with stiffness core (MPSC), which is formed by inserting a precast reinforced concrete pile (PRCP), in-situ tests involving MPSCs with different lengths, diameters, water cement ratios and PRCPs, cement mixed piles, and drilling hole piles, were carried out. Limit bearing capacities, load-settlement curves and stress distribution of MPSCs and mixed piles were obtained. The load transfer between cement soil and PRCP was analyzed by finite element method (FEM). Test results and FEM analysis show that an MPSC has fully utilized the big friction from a cement mixed pile and the high compressive strength from a PRCP which transfers outer top load into the inner cement soil, and that inserting a PRCP into a mixed pile changes the stress distribution of a mixed pile and improves frictional resistance between a mixed pile and soil. The length and the section area on PRCP of an MPSC both have an optimum value. Adopting MPSC is effective in improving the bearing capacity of soft soil ground.
基金supported by the National Natural Science Foundation of China (Nos. 40874070,40904028 and 51104156)the Self-Researched Subject of State Key Laboratory of Coal Resources and Mine Safety (No. SKLCRSM09X01)the Specialized Fund for the Basic Research Operating Expenses Program of Central College (No. 2010QNB01)
文摘The front abutment pressure of a fully-mechanized workface of 11061 soft coal isolated island of Liangbei Coal Mine was measured and studied using a self-developed mining-induced stress monitoring system associated with electromagnetic radiation technology, and the effects of abutment pressure distribution on strata behavior we discussed. The results indicate that the miningdnduced influencing distance advanced at the fully-mechanized working face of soft coal isolated island is larger than that at the gen- eral working face at the isolated island, besides the fracture zone in front of working face was widened to some extent, and the influencing range caused by relaxations on both roadways became bigger with the advancing working face. Moreover, it can be indicated that mining has significant effect on strata behav- ior of fully-mechanized working face of soft coal isolated island, which is mostly distributed in the area of stress concentration. The research results have an important reference value for revealing the distribution pattern of the front abutment pressure of a fully-mechanized working face of soft coal isolated island, and controlling the coal-rock dynamic disaster occurrence under similar mining conditions.
基金Supported by the National Natural Science Foundation of Anhui Province (K J2010A090)
文摘In order to obtain the distribution rules of abutment pressure around the 1151 (3) fully mechanized top-coal caving (FMTC) face of Xieqiao Colliery, the KSE-II-1 type bore-hole stress gauges were installed in the tailentry and headentry to measure the mining-induced stress. The distribution rules of the front and side abutment pressure were demonstrated. The results show that distribution rules of stress are obviously different in the vicinity of the face and entries. The peak value of abutment pressure in the protective coal pillar and face are located commonly in front of the working face along the strike, and they are located at the stress-decreased zone near the face. There is no stress peak value in the lateral coal mass beside the headentry in front of the face on the strike, and the peak value of abutment pressure appears at the rear area of the face. There are stress peak values both in the protective coal pillar and in the lateral coal mass beside the headentry to the dip.