This paper determines a delta inference operator C based on the notion of reasonable consequence of Adams′ system and studies its properties. It shows another approach to study inductive and probabilistic reasoning.
An intermediate compound 2, 4-bis(laurylamino)-6-(1-(2-aminoethyl)-piperazine)-1, 3, 5-triazine was prepared by stepwise nucleophilic substitution on triazine ring by lauryl amine and subsequently 1-(2-aminoet...An intermediate compound 2, 4-bis(laurylamino)-6-(1-(2-aminoethyl)-piperazine)-1, 3, 5-triazine was prepared by stepwise nucleophilic substitution on triazine ring by lauryl amine and subsequently 1-(2-aminoethyl)-piperazine. Then imidization of perylene-3, 4, 9, 10-tetracarboxylic acid dianhydride with 2,4-bis(laurylamino)-6-(1-(2-aminoethyl)-piperazine)-1, 3, 5-triazine was carried out to afford a novel perylene derivative bearing two melamine blocks (S2) and 1, 6, 7, 12-tetra(4-tert-butyl phenoxy)-perylene-3, 4, 9, 10-tetracarboxylic acid bisimide (S1. The hydrogen-bonding interactions between S1 and S2 were investigated by IH NMR spectrum, UV/Vis spectrum and fluorescence spectrum. The influences on the morphologies of S1·S2 aggregates were investigated. The results show that well-defined nanofibers with a diameter of about 100 nm can be obtained by self-assembly between S1 and S2 only in CH2Cl2 solution. Based on these results, guidelines for the molecular design and self-assembly of supramolecular polymer materials are presented.展开更多
This paper studies the impact of structure of cobalt catalysts supported on carbon nanotubes(CNT) on the activity and product selectivity of Fischer-Tropsch synthesis(FTS) reaction.Three types of CNT with average pore...This paper studies the impact of structure of cobalt catalysts supported on carbon nanotubes(CNT) on the activity and product selectivity of Fischer-Tropsch synthesis(FTS) reaction.Three types of CNT with average pore sizes of 5,11,and 17 nm were used as the supports.The catalysts were prepared by selectively impregnating cobalt nanoparticles either inside or outside CNT.The TPR results indicated that the catalyst with Co particles inside CNT was easier to be reduced than those outside CNT,and the reducibility of cobalt oxide particles inside the CNT decreased with the cobalt oxide particle size increasing.The activity of the catalyst with Co inside CNT was higher than that of catalysts with Co particles outside CNT.Smaller CNT pore size also appears to enhance the catalyst reduction and FTS activity due to the little interaction between cobalt oxide with carbon and the enhanced electron shift on the non-planar carbon tube surface.展开更多
文摘This paper determines a delta inference operator C based on the notion of reasonable consequence of Adams′ system and studies its properties. It shows another approach to study inductive and probabilistic reasoning.
基金Project(50573019)support by the National Natural Science Foundation of China
文摘An intermediate compound 2, 4-bis(laurylamino)-6-(1-(2-aminoethyl)-piperazine)-1, 3, 5-triazine was prepared by stepwise nucleophilic substitution on triazine ring by lauryl amine and subsequently 1-(2-aminoethyl)-piperazine. Then imidization of perylene-3, 4, 9, 10-tetracarboxylic acid dianhydride with 2,4-bis(laurylamino)-6-(1-(2-aminoethyl)-piperazine)-1, 3, 5-triazine was carried out to afford a novel perylene derivative bearing two melamine blocks (S2) and 1, 6, 7, 12-tetra(4-tert-butyl phenoxy)-perylene-3, 4, 9, 10-tetracarboxylic acid bisimide (S1. The hydrogen-bonding interactions between S1 and S2 were investigated by IH NMR spectrum, UV/Vis spectrum and fluorescence spectrum. The influences on the morphologies of S1·S2 aggregates were investigated. The results show that well-defined nanofibers with a diameter of about 100 nm can be obtained by self-assembly between S1 and S2 only in CH2Cl2 solution. Based on these results, guidelines for the molecular design and self-assembly of supramolecular polymer materials are presented.
基金the support from the National Natural Science Foundation of China (21073238)the National Basic Research Program of China(2011CB211704)the Natural Science Foundation of Hubei Province(2009CDA049)
文摘This paper studies the impact of structure of cobalt catalysts supported on carbon nanotubes(CNT) on the activity and product selectivity of Fischer-Tropsch synthesis(FTS) reaction.Three types of CNT with average pore sizes of 5,11,and 17 nm were used as the supports.The catalysts were prepared by selectively impregnating cobalt nanoparticles either inside or outside CNT.The TPR results indicated that the catalyst with Co particles inside CNT was easier to be reduced than those outside CNT,and the reducibility of cobalt oxide particles inside the CNT decreased with the cobalt oxide particle size increasing.The activity of the catalyst with Co inside CNT was higher than that of catalysts with Co particles outside CNT.Smaller CNT pore size also appears to enhance the catalyst reduction and FTS activity due to the little interaction between cobalt oxide with carbon and the enhanced electron shift on the non-planar carbon tube surface.